IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v35y2018i01ns0217595918500070.html
   My bibliography  Save this article

Ordinal Distance Metric Learning with MDS for Image Ranking

Author

Listed:
  • Panpan Yu

    (School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China)

  • Qingna Li

    (School of Mathematics and Statistics/Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, P. R. China)

Abstract

Image ranking is to rank images based on some known ranked images. In this paper, we propose an improved linear ordinal distance metric learning approach based on the linear distance metric learning model. By decomposing the distance metric A as LTL, the problem can be cast as looking for a linear map between two sets of points in different spaces, meanwhile maintaining some data structures. The ordinal relation of the labels can be maintained via classical multidimensional scaling, a popular tool for dimension reduction in statistics. A least squares fitting term is then introduced to the cost function, which can also maintain the local data structure. The resulting model is an unconstrained problem, and can better fit the data structure. Extensive numerical results demonstrate the improvement of the new approach over the linear distance metric learning model both in speed and ranking performance.

Suggested Citation

  • Panpan Yu & Qingna Li, 2018. "Ordinal Distance Metric Learning with MDS for Image Ranking," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-19, February.
  • Handle: RePEc:wsi:apjorx:v:35:y:2018:i:01:n:s0217595918500070
    DOI: 10.1142/S0217595918500070
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595918500070
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595918500070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis Cailliez, 1983. "The analytical solution of the additive constant problem," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 305-308, June.
    2. Zai Yun Peng & Yong Zhao & Kai Zhi Yu & Zhi Lin, 2014. "Semi- -Preinvexity and Optimality in Mathematical Programming," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, April.
    3. Chao Ding & Hou-Duo Qi, 2017. "Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation," Computational Optimization and Applications, Springer, vol. 66(1), pages 187-218, January.
    4. Gale Young & A. Householder, 1938. "Discussion of a set of points in terms of their mutual distances," Psychometrika, Springer;The Psychometric Society, vol. 3(1), pages 19-22, March.
    5. Warren Torgerson, 1952. "Multidimensional scaling: I. Theory and method," Psychometrika, Springer;The Psychometric Society, vol. 17(4), pages 401-419, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengzhen Zhai & Qingna Li, 2020. "A Euclidean distance matrix model for protein molecular conformation," Journal of Global Optimization, Springer, vol. 76(4), pages 709-728, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si-Tong Lu & Miao Zhang & Qing-Na Li, 2020. "Feasibility and a fast algorithm for Euclidean distance matrix optimization with ordinal constraints," Computational Optimization and Applications, Springer, vol. 76(2), pages 535-569, June.
    2. Fengzhen Zhai & Qingna Li, 2020. "A Euclidean distance matrix model for protein molecular conformation," Journal of Global Optimization, Springer, vol. 76(4), pages 709-728, April.
    3. Zha, Hongyuan & Zhang, Zhenyue, 2007. "Continuum Isomap for manifold learnings," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 184-200, September.
    4. Malone, Samuel W. & Tarazaga, Pablo & Trosset, Michael W., 2002. "Better initial configurations for metric multidimensional scaling," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 143-156, November.
    5. Michael W. Trosset, 2002. "Extensions of Classical Multidimensional Scaling via Variable Reduction," Computational Statistics, Springer, vol. 17(2), pages 147-163, July.
    6. Qian Zhang & Xinyuan Zhao & Chao Ding, 2021. "Matrix optimization based Euclidean embedding with outliers," Computational Optimization and Applications, Springer, vol. 79(2), pages 235-271, June.
    7. Sheng-Shiung Wu & Sing-Jie Jong & Kai Hu & Jiann-Ming Wu, 2021. "Learning Neural Representations and Local Embedding for Nonlinear Dimensionality Reduction Mapping," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    8. W. Alan Nicewander & Joseph Lee Rodgers, 2022. "Obituary: Bruce McArthur Bloxom 1938–2020," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1042-1044, September.
    9. Cornelius Fritz & Göran Kauermann, 2022. "On the interplay of regional mobility, social connectedness and the spread of COVID‐19 in Germany," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 400-424, January.
    10. Maarten M. Kampert & Jacqueline J. Meulman & Jerome H. Friedman, 2017. "rCOSA: A Software Package for Clustering Objects on Subsets of Attributes," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 514-547, October.
    11. Trosset, Michael W. & Priebe, Carey E., 2008. "The out-of-sample problem for classical multidimensional scaling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4635-4642, June.
    12. Alexander Strehl & Joydeep Ghosh, 2003. "Relationship-Based Clustering and Visualization for High-Dimensional Data Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 208-230, May.
    13. Walesiak Marek & Dudek Andrzej, 2017. "Selecting the Optimal Multidimensional Scaling Procedure for Metric Data With R Environment," Statistics in Transition New Series, Statistics Poland, vol. 18(3), pages 521-540, September.
    14. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    15. Benjamin B. Risk & David S. Matteson & David Ruppert & Ani Eloyan & Brian S. Caffo, 2014. "An evaluation of independent component analyses with an application to resting-state fMRI," Biometrics, The International Biometric Society, vol. 70(1), pages 224-236, March.
    16. Carter T. Butts & Kathleen M. Carley, 2005. "Some Simple Algorithms for Structural Comparison," Computational and Mathematical Organization Theory, Springer, vol. 11(4), pages 291-305, December.
    17. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    18. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    19. José Luis Ortega Priego, 2003. "A Vector Space Model as a methodological approach to the Triple Helix dimensionality: A comparative study of Biology and Biomedicine Centres of two European National Research Councils from a Webometri," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 429-443, October.
    20. Chao Ding & Hou-Duo Qi, 2017. "Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation," Computational Optimization and Applications, Springer, vol. 66(1), pages 187-218, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:35:y:2018:i:01:n:s0217595918500070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.