IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v48y1983i2p305-308.html
   My bibliography  Save this article

The analytical solution of the additive constant problem

Author

Listed:
  • Francis Cailliez

Abstract

No abstract is available for this item.

Suggested Citation

  • Francis Cailliez, 1983. "The analytical solution of the additive constant problem," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 305-308, June.
  • Handle: RePEc:spr:psycho:v:48:y:1983:i:2:p:305-308
    DOI: 10.1007/BF02294026
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294026
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeffrey Vervloesem & Ernesto Marcheggiani & MD Abdul Mueed Choudhury & Bart Muys, 2022. "Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity," Sustainability, MDPI, vol. 14(12), pages 1-31, June.
    2. Cornelius Fritz & Göran Kauermann, 2022. "On the interplay of regional mobility, social connectedness and the spread of COVID‐19 in Germany," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 400-424, January.
    3. Ilaria Lucrezia Amerise & Agostino Tarsitano, 2012. "Weighting Distance Matrices Using Rank Correlations," Working Papers 201209, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    4. Timmermans, Catherine & von Sachs, Rainer, 2013. "BAGIDIS: Statistically investigating curves with sharp local patterns using a new functional measure of dissimilarity," LIDAM Discussion Papers ISBA 2013031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Irène Gijbels & Marek Omelka, 2013. "Testing for Homogeneity of Multivariate Dispersions Using Dissimilarity Measures," Biometrics, The International Biometric Society, vol. 69(1), pages 137-145, March.
    6. Oscar Lao & Fan Liu & Andreas Wollstein & Manfred Kayser, 2014. "GAGA: A New Algorithm for Genomic Inference of Geographic Ancestry Reveals Fine Level Population Substructure in Europeans," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-11, February.
    7. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    8. Ricotta, Carlo & Szeidl, Laszlo, 2009. "Diversity partitioning of Rao’s quadratic entropy," Theoretical Population Biology, Elsevier, vol. 76(4), pages 299-302.
    9. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
    10. Panpan Yu & Qingna Li, 2018. "Ordinal Distance Metric Learning with MDS for Image Ranking," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-19, February.
    11. Arbisser, Ilana M. & Rosenberg, Noah A., 2020. "FST and the triangle inequality for biallelic markers," Theoretical Population Biology, Elsevier, vol. 133(C), pages 117-129.
    12. Fionn Murtagh, 2009. "The Remarkable Simplicity of Very High Dimensional Data: Application of Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 249-277, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:48:y:1983:i:2:p:305-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.