IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v24y2007i04ns0217595907001383.html
   My bibliography  Save this article

Modeling Traffic Flows With Queueing Models: A Review

Author

Listed:
  • TOM VAN WOENSEL

    (Department of Technology Management, Eindhoven University of Technology, Den Dolech 2, Eindhoven, 5600MB, The Netherlands)

  • NICO VANDAELE

    (Department of Applied Economic Sciences, University of Antwerp, Prinsstraat 13, Antwerp, B2000, Belgium)

Abstract

In this paper, an overview of different analytic queueing models for traffic on road networks is presented. In the literature, it has been shown that queueing models can be used to adequately model uninterrupted traffic flows. This paper gives a broad review on this literature. Moreover, it is shown that the developed published methodologies (which are mainly single node oriented) can be extended towards queueing networks. First, an extension towards queueing networks with infinite buffer sizes is evaluated. Secondly, the assumption of infinite buffer sizes is dropped leading to queueing networks with finite buffer sizes. The impact of the buffer size when comparing the different queueing network methodologies is studied in detail. The paper ends with an analytical application tool to facilitate the optimal positioning of the counting points on a highway.

Suggested Citation

  • Tom Van Woensel & Nico Vandaele, 2007. "Modeling Traffic Flows With Queueing Models: A Review," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 435-461.
  • Handle: RePEc:wsi:apjorx:v:24:y:2007:i:04:n:s0217595907001383
    DOI: 10.1142/S0217595907001383
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595907001383
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595907001383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denos C. Gazis, 2002. "The Origins of Traffic Theory," Operations Research, INFORMS, vol. 50(1), pages 69-77, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiems, Dieter & Prabhu, Balakrishna & De Turck, Koen, 2019. "Travel times, rational queueing and the macroscopic fundamental diagram of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 412-421.
    2. Ng, ManWo & Khattak, Asad & Talley, Wayne K., 2013. "Modeling the time to the next primary and secondary incident: A semi-Markov stochastic process approach," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 44-57.
    3. Neda Mirzaeian & Soo-Haeng Cho & Alan Scheller-Wolf, 2021. "A Queueing Model and Analysis for Autonomous Vehicles on Highways," Management Science, INFORMS, vol. 67(5), pages 2904-2923, May.
    4. Yusei Koyama & Ayane Nakamura & Tuan Phung-Duc, 2024. "Sojourn Time Analysis of a Single-Server Queue with Single- and Batch-Service Customers," Mathematics, MDPI, vol. 12(18), pages 1-27, September.
    5. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    6. Alessio Pagani & Abhinav Mehrotra & Mirco Musolesi, 2021. "Graph input representations for machine learning applications in urban network analysis," Environment and Planning B, , vol. 48(4), pages 741-758, May.
    7. Herwig Bruneel & Willem Mélange & Dieter Claeys & Joris Walraevens, 2017. "A two-class global FCFS discrete-time queueing model with arbitrary-length constant service times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 164-178, April.
    8. Carolina Osorio & Jana Yamani, 2017. "Analytical and Scalable Analysis of Transient Tandem Markovian Finite Capacity Queueing Networks," Transportation Science, INFORMS, vol. 51(3), pages 823-840, August.
    9. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    10. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    11. Willem Mélange & Joris Walraevens & Herwig Bruneel, 2022. "Performance analysis of a continuous-time two-class global first-come-first-served queue with two servers and presorting," Annals of Operations Research, Springer, vol. 310(2), pages 577-594, March.
    12. Ayane Nakamura & Tuan Phung-Duc, 2023. "Equilibrium Analysis for Batch Service Queueing Systems with Strategic Choice of Batch Size," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    13. Bruneel, Herwig & Mélange, Willem & Steyaert, Bart & Claeys, Dieter & Walraevens, Joris, 2012. "A two-class discrete-time queueing model with two dedicated servers and global FCFS service discipline," European Journal of Operational Research, Elsevier, vol. 223(1), pages 123-132.
    14. Cruz, F.R.B. & van Woensel, T. & MacGregor Smith, J. & Lieckens, K., 2010. "On the system optimum of traffic assignment in M/G/c/c state-dependent queueing networks," European Journal of Operational Research, Elsevier, vol. 201(1), pages 183-193, February.
    15. Niek Baer & Richard J. Boucherie & Jan-Kees C. W. van Ommeren, 2019. "Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic," Transportation Science, INFORMS, vol. 53(2), pages 585-596, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Hsun-Jung & Tseng, Ming-Te & Hwang, Ming-Chorng, 2014. "Using detection of vehicular presence to estimate shockwave speed and upstream traffics for a signalized intersection," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1151-1165.
    2. Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    3. Tangian, Andranik, 2007. "Selecting predictors for traffic control by methods of the mathematical theory of democracy," European Journal of Operational Research, Elsevier, vol. 181(2), pages 986-1003, September.
    4. Montanino, Marcello & Punzo, Vincenzo, 2021. "On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 133-154.
    5. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    6. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:24:y:2007:i:04:n:s0217595907001383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.