IDEAS home Printed from https://ideas.repec.org/a/wsi/afexxx/v12y2017i01ns2010495217500051.html
   My bibliography  Save this article

Asymptotics Of Bond Yields And Volatilities For Extended Vasicek Models Under The Real-World Measure

Author

Listed:
  • K. FERGUSSON

    (University of Melbourne, Centre for Actuarial Studies, Victoria 3010, Australia)

Abstract

Vasicek's short rate model is a mean reverting model of the short rate which permits closed-form pricing formulae of zero coupon bonds and options on zero coupon bonds. This paper supplies proofs which are valid for any single factor mean reverting Gaussian short rate model having time-inhomogeneous parameters. The formulae are for the expected present value of payoffs under the real-world probability measure, known as actuarial pricing. Importantly, we give formulae for asymptotic levels of bond yields and volatilities for extended Vasicek models when suitable conditions are imposed on the model parameters.

Suggested Citation

  • K. Fergusson, 2017. "Asymptotics Of Bond Yields And Volatilities For Extended Vasicek Models Under The Real-World Measure," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-33, March.
  • Handle: RePEc:wsi:afexxx:v:12:y:2017:i:01:n:s2010495217500051
    DOI: 10.1142/S2010495217500051
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010495217500051
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010495217500051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    3. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    4. Platen, Eckhard, 2001. "A benchmark model for financial markets," SFB 373 Discussion Papers 2001,52, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    6. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    7. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Papers 1610.09875, arXiv.org.
    8. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    9. Eckhard Platen, 1999. "A short term interest rate model," Finance and Stochastics, Springer, vol. 3(2), pages 215-225.
    10. K. Fergusson & E. Platen, 2015. "Application Of Maximum Likelihood Estimation To Stochastic Short Rate Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-26, December.
    11. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kladívko, Kamil & Rusý, Tomáš, 2023. "Maximum likelihood estimation of the Hull–White model," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 227-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    2. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    3. repec:uts:finphd:40 is not listed on IDEAS
    4. Kladívko, Kamil & Rusý, Tomáš, 2023. "Maximum likelihood estimation of the Hull–White model," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 227-247.
    5. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    6. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    9. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    12. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    13. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    14. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. Qinwen Zhu & Hui Liu & Chengfeng Sun, 2019. "Edgeworth Expansion For The Distribution Of The Maximum Likelihood Estimate In The Vasicek Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-26, March.
    17. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    18. Lin, Shih-Kuei & Wang, Shin-Yun & Chen, Carl R. & Xu, Lian-Wen, 2017. "Pricing Range Accrual Interest Rate Swap employing LIBOR market models with jump risks," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 359-373.
    19. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    20. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    21. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:afexxx:v:12:y:2017:i:01:n:s2010495217500051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/afe/afe.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.