IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i7p1299-1316.html
   My bibliography  Save this article

A Tiered Framework for Risk‐Relevant Characterization and Ranking of Chemical Exposures: Applications to the National Children's Study (NCS)

Author

Listed:
  • Panos G. Georgopoulos
  • Christopher J. Brinkerhoff
  • Sastry Isukapalli
  • Michael Dellarco
  • Philip J. Landrigan
  • Paul J. Lioy

Abstract

A challenge for large‐scale environmental health investigations such as the National Children's Study (NCS), is characterizing exposures to multiple, co‐occurring chemical agents with varying spatiotemporal concentrations and consequences modulated by biochemical, physiological, behavioral, socioeconomic, and environmental factors. Such investigations can benefit from systematic retrieval, analysis, and integration of diverse extant information on both contaminant patterns and exposure‐relevant factors. This requires development, evaluation, and deployment of informatics methods that support flexible access and analysis of multiattribute data across multiple spatiotemporal scales. A new “Tiered Exposure Ranking” (TiER) framework, developed to support various aspects of risk‐relevant exposure characterization, is described here, with examples demonstrating its application to the NCS. TiER utilizes advances in informatics computational methods, extant database content and availability, and integrative environmental/exposure/biological modeling to support both “discovery‐driven” and “hypothesis‐driven” analyses. “Tier 1” applications focus on “exposomic” pattern recognition for extracting information from multidimensional data sets, whereas second and higher tier applications utilize mechanistic models to develop risk‐relevant exposure metrics for populations and individuals. In this article, “tier 1” applications of TiER explore identification of potentially causative associations among risk factors, for prioritizing further studies, by considering publicly available demographic/socioeconomic, behavioral, and environmental data in relation to two health endpoints (preterm birth and low birth weight). A “tier 2” application develops estimates of pollutant mixture inhalation exposure indices for NCS counties, formulated to support risk characterization for these endpoints. Applications of TiER demonstrate the feasibility of developing risk‐relevant exposure characterizations for pollutants using extant environmental and demographic/socioeconomic data.

Suggested Citation

  • Panos G. Georgopoulos & Christopher J. Brinkerhoff & Sastry Isukapalli & Michael Dellarco & Philip J. Landrigan & Paul J. Lioy, 2014. "A Tiered Framework for Risk‐Relevant Characterization and Ranking of Chemical Exposures: Applications to the National Children's Study (NCS)," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1299-1316, July.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:7:p:1299-1316
    DOI: 10.1111/risa.12165
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12165
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. S. Isukapalli & A. Roy & P. G. Georgopoulos, 2000. "Efficient Sensitivity/Uncertainty Analysis Using the Combined Stochastic Response Surface Method and Automated Differentiation: Application to Environmental and Biological Systems," Risk Analysis, John Wiley & Sons, vol. 20(5), pages 591-602, October.
    2. Resha M. Putzrath & James D. Wilson, 1999. "Fundamentals of Health Risk Assessment. Use, Derivation, Validity and Limitations of Safety Indices," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 231-247, April.
    3. Scott Marshall & Chris Gennings & Linda K. Teuschler & LeAnna G. Stork & Rogelio Tornero‐Velez & Kevin M. Crofton & Glenn E. Rice, 2013. "An Empirical Approach to Sufficient Similarity: Combining Exposure Data and Mixtures Toxicology Data," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1582-1595, September.
    4. S. S. Isukapalli & A. Roy & P. G. Georgopoulos, 1998. "Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 351-363, June.
    5. Kevin P. Brand & Mitchell J. Small, 1995. "Updating Uncertainty in an Integrated Risk Assessment: Conceptual Framework and Methods," Risk Analysis, John Wiley & Sons, vol. 15(6), pages 719-729, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alesia Ferguson & Helena Solo-Gabriele, 2016. "Children’s Exposure to Environmental Contaminants: An Editorial Reflection of Articles in the IJERPH Special Issue Entitled, “Children’s Exposure to Environmental Contaminants”," IJERPH, MDPI, vol. 13(11), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    2. Isabelle Albert & Emmanuel Grenier & Jean‐Baptiste Denis & Judith Rousseau, 2008. "Quantitative Risk Assessment from Farm to Fork and Beyond: A Global Bayesian Approach Concerning Food‐Borne Diseases," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 557-571, April.
    3. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    4. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    5. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    6. Cheng, Haiyan & Sandu, Adrian, 2009. "Efficient uncertainty quantification with the polynomial chaos method for stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3278-3295.
    7. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    8. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Analysis in Environmental Health Risk Management Decisions: Past, Present, and Future," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 635-650, June.
    9. Bohan, A. & Shalloo, L. & Malcolm, B. & Ho, C.K.M. & Creighton, P. & Boland, T.M. & McHugh, N., 2016. "Description and validation of the Teagasc Lamb Production Model," Agricultural Systems, Elsevier, vol. 148(C), pages 124-134.
    10. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Literature Analysis: A Review of Applications in Health Risk Management," Medical Decision Making, , vol. 24(3), pages 287-298, June.
    11. Natalie Commeau & Marie Cornu & Isabelle Albert & Jean‐Baptiste Denis & Eric Parent, 2012. "Hierarchical Bayesian Models to Assess Between‐ and Within‐Batch Variability of Pathogen Contamination in Food," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 395-415, March.
    12. Himanshu Sharma & Umesh Vaidya & Baskar Ganapathysubramanian, 2021. "Contaminant Source Identification from Finite Sensor Data: Perron–Frobenius Operator and Bayesian Inference," Energies, MDPI, vol. 14(20), pages 1-17, October.
    13. Rituparna Chutia, 2013. "Environmental risk modelling under probability-normal interval-valued fuzzy number," Fuzzy Information and Engineering, Springer, vol. 5(3), pages 359-371, September.
    14. Elizabeth A. Casman & M. Granger Morgan & Hadi Dowlatabadi, 1999. "Mixed Levels of Uncertainty in Complex Policy Models," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 33-42, February.
    15. Keller, Klaus & Miltich, Louise I. & Robinson, Alexander & Tol, Richard S.J., 2007. "How Overconfident are Current Projections of Anthropogenic Carbon Dioxide Emissions?," Climate Change Modelling and Policy Working Papers 9321, Fondazione Eni Enrico Mattei (FEEM).
    16. A. E. Ades & S. Cliffe, 2002. "Markov Chain Monte Carlo Estimation of a Multiparameter Decision Model: Consistency of Evidence and the Accurate Assessment of Uncertainty," Medical Decision Making, , vol. 22(4), pages 359-371, August.
    17. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    18. S. N. Rai & D. Krewski, 1998. "Uncertainty and Variability Analysis in Multiplicative Risk Models," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 37-45, February.
    19. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.
    20. Carl‐Gustaf Bornehag & Efthymia Kitraki & Antonios Stamatakis & Emily Panagiotidou & Christina Rudén & Huan Shu & Christian Lindh & Joelle Ruegg & Chris Gennings, 2019. "A Novel Approach to Chemical Mixture Risk Assessment—Linking Data from Population‐Based Epidemiology and Experimental Animal Tests," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2259-2271, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:7:p:1299-1316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.