IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i11p3278-3295.html
   My bibliography  Save this article

Efficient uncertainty quantification with the polynomial chaos method for stiff systems

Author

Listed:
  • Cheng, Haiyan
  • Sandu, Adrian

Abstract

The polynomial chaos (PC) method has been widely adopted as a computationally feasible approach for uncertainty quantification (UQ). Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a non-linear system of equations at every time step. Using the Galerkin approach the size of the system state increases from n to S×n, where S is the number of PC basis functions. Solving such systems with full linear algebra causes the computational cost to increase from O(n3) to O(S3n3). The S3-fold increase can make the computation prohibitive. This paper explores computationally efficient UQ techniques for stiff systems using the PC Galerkin, collocation, and collocation least-squares (LS) formulations. In the Galerkin approach, we propose a modification in the implicit time stepping process using an approximation of the Jacobian matrix to reduce the computational cost. The numerical results show a run time reduction with no negative impact on accuracy. In the stochastic collocation formulation, we propose a least-squares approach based on collocation at a low-discrepancy set of points. Numerical experiments illustrate that the collocation least-squares approach for UQ has similar accuracy with the Galerkin approach, is more efficient, and does not require any modification of the original code.

Suggested Citation

  • Cheng, Haiyan & Sandu, Adrian, 2009. "Efficient uncertainty quantification with the polynomial chaos method for stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3278-3295.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:11:p:3278-3295
    DOI: 10.1016/j.matcom.2009.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847540900127X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2009.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. S. Isukapalli & A. Roy & P. G. Georgopoulos, 2000. "Efficient Sensitivity/Uncertainty Analysis Using the Combined Stochastic Response Surface Method and Automated Differentiation: Application to Environmental and Biological Systems," Risk Analysis, John Wiley & Sons, vol. 20(5), pages 591-602, October.
    2. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xavier Rixhon & Gauthier Limpens & Diederik Coppitters & Hervé Jeanmart & Francesco Contino, 2021. "The Role of Electrofuels under Uncertainties for the Belgian Energy Transition," Energies, MDPI, vol. 14(13), pages 1-23, July.
    2. Xie, Junfei & Wan, Yan & Mills, Kevin & Filliben, James J. & Lei, Yu & Lin, Zongli, 2019. "M-PCM-OFFD: An effective output statistics estimation method for systems of high dimensional uncertainties subject to low-order parameter interactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 93-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    2. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    3. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    4. Hazan, Aurélien, 2017. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 589-602.
    5. Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.
    6. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    7. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    8. Reuven Rubinstein, 2009. "The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 491-549, December.
    9. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.
    10. Luis V. Montiel & J. Eric Bickel, 2014. "A Generalized Sampling Approach for Multilinear Utility Functions Given Partial Preference Information," Decision Analysis, INFORMS, vol. 11(3), pages 147-170, September.
    11. Kiatsupaibul, Seksan & J. Hayter, Anthony & Liu, Wei, 2017. "Rank constrained distribution and moment computations," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 229-242.
    12. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    13. Brunelli, Matteo & Corrente, Salvatore, 2024. "Modeling criteria and project interactions in portfolio decision analysis with the Choquet integral," Omega, Elsevier, vol. 126(C).
    14. Etienne de Klerk & Monique Laurent, 2018. "Comparison of Lasserre’s Measure-Based Bounds for Polynomial Optimization to Bounds Obtained by Simulated Annealing," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1317-1325, November.
    15. Sorawit Saengkyongam & Anthony Hayter & Seksan Kiatsupaibul & Wei Liu, 2020. "Efficient computation of the stochastic behavior of partial sum processes," Computational Statistics, Springer, vol. 35(1), pages 343-358, March.
    16. Arandarenko, Mihail & Corrente, Salvatore & Jandrić, Maja & Stamenković, Mladen, 2020. "Multiple criteria decision aiding as a prediction tool for migration potential of regions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1154-1166.
    17. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2023. "Randomized geometric tools for anomaly detection in stock markets," Post-Print hal-04223511, HAL.
    18. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    19. Jan Heufer, 2014. "Generating Random Optimising Choices," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 295-305, October.
    20. Zdravko I. Botev & Pierre L'Ecuyer & Gerardo Rubino & Richard Simard & Bruno Tuffin, 2013. "Static Network Reliability Estimation via Generalized Splitting," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 56-71, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:11:p:3278-3295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.