IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v29y2009i2p298-311.html
   My bibliography  Save this article

The Impact of Joint Responses of Devices in an Airport Security System

Author

Listed:
  • Xiaofeng Nie
  • Rajan Batta
  • Colin G. Drury
  • Li Lin

Abstract

In this article, we consider a model for an airport security system in which the declaration of a threat is based on the joint responses of inspection devices. This is in contrast to the typical system in which each check station independently declares a passenger as having a threat or not having a threat. In our framework the declaration of threat/no‐threat is based upon the passenger scores at the check stations he/she goes through. To do this we use concepts from classification theory in the field of multivariate statistics analysis and focus on the main objective of minimizing the expected cost of misclassification. The corresponding correct classification and misclassification probabilities can be obtained by using a simulation‐based method. After computing the overall false alarm and false clear probabilities, we compare our joint response system with two other independently operated systems. A model that groups passengers in a manner that minimizes the false alarm probability while maintaining the false clear probability within specifications set by a security authority is considered. We also analyze the staffing needs at each check station for such an inspection scheme. An illustrative example is provided along with sensitivity analysis on key model parameters. A discussion is provided on some implementation issues, on the various assumptions made in the analysis, and on potential drawbacks of the approach.

Suggested Citation

  • Xiaofeng Nie & Rajan Batta & Colin G. Drury & Li Lin, 2009. "The Impact of Joint Responses of Devices in an Airport Security System," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 298-311, February.
  • Handle: RePEc:wly:riskan:v:29:y:2009:i:2:p:298-311
    DOI: 10.1111/j.1539-6924.2008.01147.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2008.01147.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2008.01147.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura A. McLay & Sheldon H. Jacobson & John E. Kobza, 2006. "A multilevel passenger screening problem for aviation security," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(3), pages 183-197, April.
    2. Susan E. Martonosi & Arnold Barnett, 2006. "How Effective Is Security Screening of Airline Passengers?," Interfaces, INFORMS, vol. 36(6), pages 545-552, December.
    3. John E. Kobza & Sheldon H. Jacobson, 1996. "Addressing the Dependency Problem in Access Security System Architecture Design," Risk Analysis, John Wiley & Sons, vol. 16(6), pages 801-812, December.
    4. Arnold Barnett, 2004. "CAPPS II: The Foundation of Aviation Security?," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 909-916, August.
    5. Lazar Babu, Vellara L. & Batta, Rajan & Lin, Li, 2006. "Passenger grouping under constant threat probability in an airport security system," European Journal of Operational Research, Elsevier, vol. 168(2), pages 633-644, January.
    6. Alexander G. Nikolaev & Sheldon H. Jacobson & Laura A. McLay, 2007. "A Sequential Stochastic Security System Design Problem for Aviation Security," Transportation Science, INFORMS, vol. 41(2), pages 182-194, May.
    7. Julie L. Virta & Sheldon H. Jacobson & John E. Kobza, 2003. "Analyzing the Cost of Screening Selectee and Non‐Selectee Baggage," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 897-908, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    2. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Laura A. McLay & Adrian J. Lee & Sheldon H. Jacobson, 2010. "Risk-Based Policies for Airport Security Checkpoint Screening," Transportation Science, INFORMS, vol. 44(3), pages 333-349, August.
    3. Alexander G. Nikolaev & Sheldon H. Jacobson & Laura A. McLay, 2007. "A Sequential Stochastic Security System Design Problem for Aviation Security," Transportation Science, INFORMS, vol. 41(2), pages 182-194, May.
    4. Nie, Xiaofeng & Parab, Gautam & Batta, Rajan & Lin, Li, 2012. "Simulation-based Selectee Lane queueing design for passenger checkpoint screening," European Journal of Operational Research, Elsevier, vol. 219(1), pages 146-155.
    5. David Anderson, 2021. "Optimising multi-layered security screening," Journal of Transportation Security, Springer, vol. 14(3), pages 249-273, December.
    6. Huseyin Cavusoglu & Byungwan Koh & Srinivasan Raghunathan, 2010. "An Analysis of the Impact of Passenger Profiling for Transportation Security," Operations Research, INFORMS, vol. 58(5), pages 1287-1302, October.
    7. Ajay Sudharshan Satish & Akul Mangal & Prathamesh Churi, 2023. "A systematic review of passenger profiling in airport security system: Taking a potential case study of CAPPS II," Journal of Transportation Security, Springer, vol. 16(1), pages 1-41, December.
    8. Nie, Xiaofeng & Batta, Rajan & Drury, Colin G. & Lin, Li, 2009. "Passenger grouping with risk levels in an airport security system," European Journal of Operational Research, Elsevier, vol. 194(2), pages 574-584, April.
    9. Sheldon H. Jacobson & Tamana Karnani & John E. Kobza & Lynsey Ritchie, 2006. "A Cost‐Benefit Analysis of Alternative Device Configurations for Aviation‐Checked Baggage Security Screening," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 297-310, April.
    10. Yonghua Ji & Subodha Kumar & Vijay Mookerjee, 2016. "When Being Hot Is Not Cool: Monitoring Hot Lists for Information Security," Information Systems Research, INFORMS, vol. 27(4), pages 897-918, December.
    11. Song, Cen & Zhuang, Jun, 2017. "N-stage security screening strategies in the face of strategic applicants," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 292-301.
    12. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    13. Aniruddha Bagchi & Jomon Aliyas Paul, 2014. "Optimal Allocation of Resources in Airport Security: Profiling vs. Screening," Operations Research, INFORMS, vol. 62(2), pages 219-233, April.
    14. Mark G. Stewart & John Mueller, 2013. "Terrorism Risks and Cost‐Benefit Analysis of Aviation Security," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 893-908, May.
    15. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    16. Huseyin Cavusoglu & Young Kwark & Bin Mai & Srinivasan Raghunathan, 2013. "Passenger Profiling and Screening for Aviation Security in the Presence of Strategic Attackers," Decision Analysis, INFORMS, vol. 10(1), pages 63-81, March.
    17. Nie, Xiaofeng, 2019. "The impact of conditional dependence on checked baggage screening," European Journal of Operational Research, Elsevier, vol. 278(3), pages 883-893.
    18. Lee, Adrian J. & Jacobson, Sheldon H., 2011. "The impact of aviation checkpoint queues on optimizing security screening effectiveness," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 900-911.
    19. Adrian J. Lee & Sheldon H. Jacobson, 2012. "Addressing Passenger Risk Uncertainty for Aviation Security Screening," Transportation Science, INFORMS, vol. 46(2), pages 189-203, May.
    20. Laura A. McLay & Sheldon H. Jacobson & John E. Kobza, 2006. "A multilevel passenger screening problem for aviation security," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(3), pages 183-197, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:29:y:2009:i:2:p:298-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.