IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v24y2004i3p573-585.html
   My bibliography  Save this article

Comparison of Sensitivity Analysis Methods Based on Applications to a Food Safety Risk Assessment Model

Author

Listed:
  • Sumeet R. Patil
  • H. Christopher Frey

Abstract

Sensitivity analysis (SA) methods are a valuable tool for identifying critical control points (CCPs), which is one of the important steps in the hazard analysis and CCP approach that is used to ensure safe food. There are many SA methods used across various disciplines. Furthermore, food safety process risk models pose challenges because they often are highly nonlinear, contain thresholds, and have discrete inputs. Therefore, it is useful to compare and evaluate SA methods based upon applications to an example food safety risk model. Ten SA methods were applied to a draft Vibrio parahaemolyticus (Vp) risk assessment model developed by the Food and Drug Administration. The model was modified so that all inputs were independent. Rankings of key inputs from different methods were compared. Inputs such as water temperature, number of oysters per meal, and the distributional assumption for the unrefrigerated time were the most important inputs, whereas time on water, fraction of pathogenic Vp, and the distributional assumption for the weight of oysters were the least important inputs. Most of the methods gave a similar ranking of key inputs even though the methods differed in terms of being graphical, mathematical, or statistical, accounting for individual effects or joint effect of inputs, and being model dependent or model independent. A key recommendation is that methods be further compared by application on different and more complex food safety models. Model independent methods, such as ANOVA, mutual information index, and scatter plots, are expected to be more robust than others evaluated.

Suggested Citation

  • Sumeet R. Patil & H. Christopher Frey, 2004. "Comparison of Sensitivity Analysis Methods Based on Applications to a Food Safety Risk Assessment Model," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 573-585, June.
  • Handle: RePEc:wly:riskan:v:24:y:2004:i:3:p:573-585
    DOI: 10.1111/j.0272-4332.2004.00460.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2004.00460.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2004.00460.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    2. Gregory C. Critchfield & Keith E. Willard, 1986. "Probabilistic Analysis of Decision Trees Using Monte Carlo Simulation," Medical Decision Making, , vol. 6(2), pages 85-92, June.
    3. H. Christopher Frey, 2002. "Introduction to Special Section on Sensitivity Analysis and Summary of NCSU/USDA Workshop on Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 539-545, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    4. R. R. L. Simons & A. A. Hill & A. Swart & L. Kelly & E. L. Snary, 2016. "A Transport and Lairage Model for Salmonella Transmission Between Pigs Applicable to EU Member States," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 482-497, March.
    5. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    6. A. N. Swart & F. van Leusden & M. J. Nauta, 2016. "A QMRA Model for Salmonella in Pork Products During Preparation and Consumption," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 516-530, March.
    7. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    8. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    9. Chu-Agor, M.L. & Muñoz-Carpena, R. & Kiker, G.A. & Aiello-Lammens, M.E. & Akçakaya, H.R. & Convertino, M. & Linkov, I., 2012. "Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective," Ecological Modelling, Elsevier, vol. 224(1), pages 33-47.
    10. Bert, Federico E. & Laciana, Carlos E. & Podesta, Guillermo P. & Satorre, Emilio H. & Menendez, Angel N., 2007. "Sensitivity of CERES-Maize simulated yields to uncertainty in soil properties and daily solar radiation," Agricultural Systems, Elsevier, vol. 94(2), pages 141-150, May.
    11. Andrew A. Hill & Robin R. L. Simons & Louise Kelly & Emma L. Snary, 2016. "A Farm Transmission Model for Salmonella in Pigs, Applicable to E.U. Member States," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 461-481, March.
    12. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    13. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    14. Emanuele Borgonovo, 2008. "Sensitivity Analysis of Model Output with Input Constraints: A Generalized Rationale for Local Methods," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 667-680, June.
    15. Emanuele Borgonovo, 2010. "A Methodology for Determining Interactions in Probabilistic Safety Assessment Models by Varying One Parameter at a Time," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 385-399, March.
    16. Emanuele Borgonovo, 2008. "Epistemic Uncertainty in the Ranking and Categorization of Probabilistic Safety Assessment Model Elements: Issues and Findings," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 983-1001, August.
    17. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    18. Shan Gao & Weimin Li & Shuang Ling & Xin Dou & Xiaozhou Liu, 2019. "An Empirical Study on the Influence Path of Environmental Risk Perception on Behavioral Responses In China," IJERPH, MDPI, vol. 16(16), pages 1-18, August.
    19. Amir Mokhtari & David Oryang & Yuhuan Chen & Regis Pouillot & Jane Van Doren, 2018. "A Mathematical Model for Pathogen Cross‐Contamination Dynamics during the Postharvest Processing of Leafy Greens," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1718-1737, August.
    20. Tianjun Feng & L. Robin Keller & Ping Wu & Yifan Xu, 2014. "An Empirical Study of the Toxic Capsule Crisis in China: Risk Perceptions and Behavioral Responses," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 698-710, April.
    21. Liu, Qiao & Homma, Toshimitsu, 2009. "A new computational method of a moment-independent uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1205-1211.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    2. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    3. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    4. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    5. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    6. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    7. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    8. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    9. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    10. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    11. Amirhossein Mokhtari & Christina M. Moore & Hong Yang & Lee‐Ann Jaykus & Roberta Morales & Sheryl C. Cates & Peter Cowen, 2006. "Consumer‐Phase Salmonella enterica serovar Enteritidis Risk Assessment for Egg‐Containing Food Products," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 753-768, June.
    12. James C. Felli & Gordon B. Hazen, 2004. "Javelin Diagrams: A Graphical Tool for Probabilistic Sensitivity Analysis," Decision Analysis, INFORMS, vol. 1(2), pages 93-107, June.
    13. Elaine O Nsoesie & Richard J Beckman & Madhav V Marathe, 2012. "Sensitivity Analysis of an Individual-Based Model for Simulation of Influenza Epidemics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    14. Agee, Philip & Nikdel, Leila & McCoy, Andrew & Kianpour rad, Simin & Gao, Xinghua, 2024. "Manufactured housing: Energy burden outcomes from measured and simulated building performance data," Energy Policy, Elsevier, vol. 186(C).
    15. Glenn D. Rennels & Edward H. Shortliffe & Perry L. Miller, 1987. "Choice and Explanation in Medical Management," Medical Decision Making, , vol. 7(1), pages 22-31, February.
    16. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    17. Jose Luiz F. Barbosa & Antonio P. Coimbra & Dan Simon & Wesley P. Calixto, 2022. "Optimization Process Applied in the Thermal and Luminous Design of High Power LED Luminaires," Energies, MDPI, vol. 15(20), pages 1-28, October.
    18. Gabriel Rogers & Ruth Garside & Stuart Mealing & Martin Pitt & Rob Anderson & Matthew Dyer & Ken Stein & Margaret Somerville, 2008. "Carmustine Implants for the Treatment of Newly Diagnosed High-Grade Gliomas," PharmacoEconomics, Springer, vol. 26(1), pages 33-44, January.
    19. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    20. Retno Agustarini & Yetti Heryati & Yelin Adalina & Wahyu Catur Adinugroho & Dhany Yuniati & Rizki Ary Fambayun & Gerhard Eli Sabastian & Asep Hidayat & Hesti Lestari Tata & William Ingram & Aulia Perd, 2022. "The Development of Indigofera spp. as a Source of Natural Dyes to Increase Community Incomes on Timor Island, Indonesia," Economies, MDPI, vol. 10(2), pages 1-30, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:24:y:2004:i:3:p:573-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.