IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v31y2020i2p239-254.html
   My bibliography  Save this article

Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska

Author

Listed:
  • Eva Stephani
  • Jeremiah Drage
  • Duane Miller
  • Benjamin M. Jones
  • Mikhail Kanevskiy

Abstract

Talik and cryopeg development related to channel migration has been observed in arctic deltas, but our knowledge on the configuration, properties, and rate of freezeback has remained limited. Along a main channel of the Colville River Delta (Alaska), we integrated subsurface data from 79 boreholes with a remote sensing analysis to measure channel changes in 1948–2013. We found that closed taliks occurred under the active channel and extended into intrapermafrost cryopeg layers under the riverbed/riverbar and active floodplain. Cryopegs as isolated small pockets were also identified at depths in older terrain units. In the study corridor, we estimated that the likelihood of talik and cryopeg occurrence was predominantly (42.2% of area) low, yet a high likelihood was also identified (27.0% of area). Permafrost growth occurred at a rapid rate in the land exposed following channel migration, likely due to the low and delayed release of latent heat as the freezing front progresses downward in the coarse‐grained soils of increasing salinity but decreasing temperatures. As the deposits keep cooling, ground ice will continue forming therefore increasing furthermore the salinity of the remaining unfrozen soil pore‐water and likely prevent the complete freezeback of the cryopegs developed in relation to channel migration.

Suggested Citation

  • Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
  • Handle: RePEc:wly:perpro:v:31:y:2020:i:2:p:239-254
    DOI: 10.1002/ppp.2046
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2046
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. L. Shur & M. T. Jorgenson, 2007. "Patterns of permafrost formation and degradation in relation to climate and ecosystems," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(1), pages 7-19, January.
    2. Yuri Shur & Kenneth M. Hinkel & Frederick E. Nelson, 2005. "The transient layer: implications for geocryology and climate‐change science," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 16(1), pages 5-17, January.
    3. T‐N. Nguyen & C. R. Burn & D. J. King & S. L. Smith, 2009. "Estimating the extent of near‐surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(2), pages 141-153, April.
    4. V. E. Romanovsky & T. E. Osterkamp, 1997. "Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 8(1), pages 1-22, January.
    5. Yanhui You & Qihao Yu & Xicai Pan & Xinbin Wang & Lei Guo, 2017. "Geophysical Imaging of Permafrost and Talik Configuration Beneath a Thermokarst Lake," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 28(2), pages 470-476, April.
    6. S. V. Kokelj & T. C. Lantz & J. Kanigan & S. L. Smith & R. Coutts, 2009. "Origin and polycyclic behaviour of tundra thaw slumps, Mackenzie Delta region, Northwest Territories, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(2), pages 173-184, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix C. Nwaishi & Matthew Q. Morison & Brandon Van Huizen & Myroslava Khomik & Richard M. Petrone & Merrin L. Macrae, 2020. "Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 509-523, October.
    2. Aleksandr Zhirkov & Maksim Sivtsev & Vasylii Lytkin & Anatolii Kirillin & Antoine Séjourné & Zhi Wen, 2023. "An Assessment of the Possibility of Restoration and Protection of Territories Disturbed by Thermokarst in Central Yakutia, Eastern Siberia," Land, MDPI, vol. 12(1), pages 1-17, January.
    3. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    4. Jean E. Holloway & Antoni G. Lewkowicz & Thomas A. Douglas & Xiaoying Li & Merritt R. Turetsky & Jennifer L. Baltzer & Huijun Jin, 2020. "Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 371-382, July.
    5. Samuel Gagnon & Michel Allard, 2021. "Modeled (1990–2100) variations in active‐layer thickness and ice‐wedge activity near Salluit, Nunavik (Canada)," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(3), pages 447-467, July.
    6. Cao, Yapeng & Li, Guoyu & Ma, Wei & Wu, Gang & Chen, Zhixiang & Wang, Buxiang & Gao, Kai & Chen, Dun & Du, Qingsong & Jing, Hongyuan & Zhang, Zhenrong, 2024. "Thaw bulb formation surrounding warm-oil pipelines and evaluation of the cooling performance of a new air convection pipeline embankment structure," Energy, Elsevier, vol. 293(C).
    7. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    8. E. Schuur & B. Abbott & W. Bowden & V. Brovkin & P. Camill & J. Canadell & J. Chanton & F. Chapin & T. Christensen & P. Ciais & B. Crosby & C. Czimczik & G. Grosse & J. Harden & D. Hayes & G. Hugelius, 2013. "Expert assessment of vulnerability of permafrost carbon to climate change," Climatic Change, Springer, vol. 119(2), pages 359-374, July.
    9. Feng Cheng & Carmala Garzione & Xiangzhong Li & Ulrich Salzmann & Florian Schwarz & Alan M. Haywood & Julia Tindall & Junsheng Nie & Lin Li & Lin Wang & Benjamin W. Abbott & Ben Elliott & Weiguo Liu &, 2022. "Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    11. Mohamed Abdouli & Sami Hammami, 2020. "Economic Growth, Environment, FDI Inflows, and Financial Development in Middle East Countries: Fresh Evidence from Simultaneous Equation Models," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(2), pages 479-511, June.
    12. Sarah M. Strand & Hanne H. Christiansen & Margareta Johansson & Jonas Åkerman & Ole Humlum, 2021. "Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum‐Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 47-58, January.
    13. Alexey Desyatkin & Matrena Okoneshnikova & Pavel Fedorov & Alexandra Ivanova & Nikolay Filippov & Roman Desyatkin, 2024. "The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia," Land, MDPI, vol. 13(8), pages 1-16, July.
    14. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Sasiri Bandara & Duane Froese & Trevor J. Porter & Fabrice Calmels, 2020. "Holocene pore‐ice δ18O and δ2H records from drained thermokarst lake basins in the Old Crow Flats, Yukon, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 497-508, October.
    16. Fujun Niu & Jing Luo & Zhanju Lin & Minhao Liu & Guoan Yin, 2014. "Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai–Tibet Engineering Corridor, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1667-1682, December.
    17. Vasylii Lytkin & Alexander Suleymanov & Lilia Vinokurova & Stepan Grigorev & Victoriya Golomareva & Svyatoslav Fedorov & Aitalina Kuzmina & Igor Syromyatnikov, 2021. "Influence of Permafrost Landscapes Degradation on Livelihoods of Sakha Republic (Yakutia) Rural Communities," Land, MDPI, vol. 10(2), pages 1-21, January.
    18. Yuri Shur & Benjamin M. Jones & Mikhail Kanevskiy & Torre Jorgenson & Melissa K. Ward Jones & Daniel Fortier & Eva Stephani & Alexander Vasiliev, 2021. "Fluvio‐thermal erosion and thermal denudation in the yedoma region of northern Alaska: Revisiting the Itkillik River exposure," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 277-298, April.
    19. Wei Shan & Lisha Qiu & Ying Guo & Chengcheng Zhang & Zhichao Xu & Shuai Liu, 2022. "Spatiotemporal Distribution Characteristics of Fire Scars Further Prove the Correlation between Permafrost Swamp Wildfires and Methane Geological Emissions," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    20. Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:31:y:2020:i:2:p:239-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.