IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v31y2020i4p509-523.html
   My bibliography  Save this article

Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands

Author

Listed:
  • Felix C. Nwaishi
  • Matthew Q. Morison
  • Brandon Van Huizen
  • Myroslava Khomik
  • Richard M. Petrone
  • Merrin L. Macrae

Abstract

Warming conditions across Canada's subarctic and arctic regions are causing permafrost landforms to thaw, resulting in rapid land cover change, including conversion of peat plateaus to wetland and thermokarst. These changes have important implications for northern ecosystems, including shifting controls on carbon uptake and release functions, as well as altering evapotranspiration (ET) rates, which form feedbacks with climatic change. Four landforms (peat plateau, sedge lawn, channel fen, and a thermokarst shoreline collapse scar) in the Hudson Bay Lowlands, northern Manitoba, were instrumented for weekly chamber measurements of carbon dioxide (CO2) and water vapor flux over a summer season (May to September 2014). Relative to other landforms, thermokarst CO2 exchange was characterized by high respiration rates early in the season, which decreased and were offset later in the season by CO2 uptake driven by sedge productivity. For all landforms, ET peaked post‐snowmelt during rapid active layer thaw, and decreased throughout the growing season, controlled primarily by atmospheric vapor deficits. This work shows distinct differences in CO2 exchange and ET between intact and thawing permafrost features. While representative of small‐scale processes in a single study region over one growing season, the results presented in this study have important implications for our understanding of ecohydrological and biogeochemical functioning of subarctic landscapes under future climates.

Suggested Citation

  • Felix C. Nwaishi & Matthew Q. Morison & Brandon Van Huizen & Myroslava Khomik & Richard M. Petrone & Merrin L. Macrae, 2020. "Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 509-523, October.
  • Handle: RePEc:wly:perpro:v:31:y:2020:i:4:p:509-523
    DOI: 10.1002/ppp.2067
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2067
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. L. Shur & M. T. Jorgenson, 2007. "Patterns of permafrost formation and degradation in relation to climate and ecosystems," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(1), pages 7-19, January.
    2. McLeod, Malem K. & Daniel, H. & Faulkner, R. & Murison, R., 2004. "Evaluation of an enclosed portable chamber to measure crop and pasture actual evapotranspiration at small scale," Agricultural Water Management, Elsevier, vol. 67(1), pages 15-34, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLeod, M.K. & MacLeod, D.A. & Daniel, H., 2006. "The effect of degradation of phalaris + white clover pasture on soil water regimes of a Brown Chromosol on the Northern Tablelands of NSW, Australia," Agricultural Water Management, Elsevier, vol. 82(3), pages 318-342, April.
    2. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    3. Jean E. Holloway & Antoni G. Lewkowicz & Thomas A. Douglas & Xiaoying Li & Merritt R. Turetsky & Jennifer L. Baltzer & Huijun Jin, 2020. "Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 371-382, July.
    4. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    5. E. Schuur & B. Abbott & W. Bowden & V. Brovkin & P. Camill & J. Canadell & J. Chanton & F. Chapin & T. Christensen & P. Ciais & B. Crosby & C. Czimczik & G. Grosse & J. Harden & D. Hayes & G. Hugelius, 2013. "Expert assessment of vulnerability of permafrost carbon to climate change," Climatic Change, Springer, vol. 119(2), pages 359-374, July.
    6. Feng Cheng & Carmala Garzione & Xiangzhong Li & Ulrich Salzmann & Florian Schwarz & Alan M. Haywood & Julia Tindall & Junsheng Nie & Lin Li & Lin Wang & Benjamin W. Abbott & Ben Elliott & Weiguo Liu &, 2022. "Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Mohamed Abdouli & Sami Hammami, 2020. "Economic Growth, Environment, FDI Inflows, and Financial Development in Middle East Countries: Fresh Evidence from Simultaneous Equation Models," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(2), pages 479-511, June.
    8. Alexey Desyatkin & Matrena Okoneshnikova & Pavel Fedorov & Alexandra Ivanova & Nikolay Filippov & Roman Desyatkin, 2024. "The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia," Land, MDPI, vol. 13(8), pages 1-16, July.
    9. Wei Shan & Lisha Qiu & Ying Guo & Chengcheng Zhang & Zhichao Xu & Shuai Liu, 2022. "Spatiotemporal Distribution Characteristics of Fire Scars Further Prove the Correlation between Permafrost Swamp Wildfires and Methane Geological Emissions," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    10. Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.
    11. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
    12. Dongyu Yang & Daqing Zhan & Miao Li & Shuying Zang, 2023. "Factors Influencing the Spatiotemporal Changes of Permafrost in Northeast China from 1982 to 2020," Land, MDPI, vol. 12(2), pages 1-22, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:31:y:2020:i:4:p:509-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.