Spatiotemporal Distribution Characteristics of Fire Scars Further Prove the Correlation between Permafrost Swamp Wildfires and Methane Geological Emissions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Y. L. Shur & M. T. Jorgenson, 2007. "Patterns of permafrost formation and degradation in relation to climate and ecosystems," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(1), pages 7-19, January.
- Mikhail Mastepanov & Charlotte Sigsgaard & Edward J. Dlugokencky & Sander Houweling & Lena Ström & Mikkel P. Tamstorf & Torben R. Christensen, 2008. "Large tundra methane burst during onset of freezing," Nature, Nature, vol. 456(7222), pages 628-630, December.
- E. A. G. Schuur & A. D. McGuire & C. Schädel & G. Grosse & J. W. Harden & D. J. Hayes & G. Hugelius & C. D. Koven & P. Kuhry & D. M. Lawrence & S. M. Natali & D. Olefeldt & V. E. Romanovsky & K. Schae, 2015. "Climate change and the permafrost carbon feedback," Nature, Nature, vol. 520(7546), pages 171-179, April.
- Christian Knoblauch & Christian Beer & Susanne Liebner & Mikhail N. Grigoriev & Eva-Maria Pfeiffer, 2018. "Methane production as key to the greenhouse gas budget of thawing permafrost," Nature Climate Change, Nature, vol. 8(4), pages 309-312, April.
- X. J. Walker & B. M. Rogers & S. Veraverbeke & J. F. Johnstone & J. L. Baltzer & K. Barrett & L. Bourgeau-Chavez & N. J. Day & W. J. Groot & C. M. Dieleman & S. Goetz & E. Hoy & L. K. Jenkins & E. S. , 2020. "Fuel availability not fire weather controls boreal wildfire severity and carbon emissions," Nature Climate Change, Nature, vol. 10(12), pages 1130-1136, December.
- Yang Chen & David M. Romps & Jacob T. Seeley & Sander Veraverbeke & William J. Riley & Zelalem A. Mekonnen & James T. Randerson, 2021. "Future increases in Arctic lightning and fire risk for permafrost carbon," Nature Climate Change, Nature, vol. 11(5), pages 404-410, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chengcheng Zhang & Wei Shan & Shuai Liu & Ying Guo & Lisha Qiu, 2023. "Simulation of Spatiotemporal Distribution and Variation of 30 m Resolution Permafrost in Northeast China from 2003 to 2021," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhichao Xu & Wei Shan & Ying Guo & Chengcheng Zhang & Lisha Qiu, 2022. "Swamp Wetlands in Degraded Permafrost Areas Release Large Amounts of Methane and May Promote Wildfires through Friction Electrification," Sustainability, MDPI, vol. 14(15), pages 1-28, July.
- Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
- Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
- Xiaoqian Li & Jianwei Xing & Shouji Pang & Youhai Zhu & Shuai Zhang & Rui Xiao & Cheng Lu, 2022. "Carbon Isotopic Evidence for Gas Hydrate Release and Its Significance on Seasonal Wetland Methane Emission in the Muli Permafrost of the Qinghai-Tibet Plateau," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
- Jinting Guo & Yuanman Hu & Zaiping Xiong & Xiaolu Yan & Chunlin Li & Rencang Bu, 2017. "Variations in Growing-Season NDVI and Its Response to Permafrost Degradation in Northeast China," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
- Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
- Felix C. Nwaishi & Matthew Q. Morison & Brandon Van Huizen & Myroslava Khomik & Richard M. Petrone & Merrin L. Macrae, 2020. "Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 509-523, October.
- Brock, W. & Xepapadeas, A., 2017.
"Climate change policy under polar amplification,"
European Economic Review, Elsevier, vol. 99(C), pages 93-112.
- Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 94(C), pages 263-282.
- William Brock & Anastasios Xepapadeas, 2016. "Climate Change Policy under Polar Amplification," DEOS Working Papers 1601, Athens University of Economics and Business.
- W. Brock & A. Xepapadeas, 2016. "Climate Change Policy under Polar Amplification," Working Papers 2016.19, Fondazione Eni Enrico Mattei.
- Brock, W. & Xepapadeas, A., 2016. "Climate Change Policy under Polar Amplification," MITP: Mitigation, Innovation and Transformation Pathways 232717, Fondazione Eni Enrico Mattei (FEEM).
- Hong Wen Yu & S. Y. Simon Wang & Wan Yu Liu, 2024. "Estimating wildfire potential in Taiwan under different climate change scenarios," Climatic Change, Springer, vol. 177(1), pages 1-26, January.
- Dmitry Orlov & Marija Menshakova & Tomas Thierfelder & Yulia Zaika & Sepp Böhme & Birgitta Evengard & Natalia Pshenichnaya, 2020. "Healthy Ecosystems Are a Prerequisite for Human Health—A Call for Action in the Era of Climate Change with a Focus on Russia," IJERPH, MDPI, vol. 17(22), pages 1-11, November.
- Louise Kessler, 2015. "Estimating the economic impact of the permafrost carbon feedback," GRI Working Papers 219, Grantham Research Institute on Climate Change and the Environment.
- Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
- Jean E. Holloway & Antoni G. Lewkowicz & Thomas A. Douglas & Xiaoying Li & Merritt R. Turetsky & Jennifer L. Baltzer & Huijun Jin, 2020. "Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 371-382, July.
- Jasper Dijkstra & Tracy Durrant & Jesús San-Miguel-Ayanz & Sander Veraverbeke, 2022. "Anthropogenic and Lightning Fire Incidence and Burned Area in Europe," Land, MDPI, vol. 11(5), pages 1-19, April.
- Aneta Parsonsova & Ivo Machar, 2021. "National Limits of Sustainability: The Czech Republic’s CO 2 Emissions in the Perspective of Planetary Boundaries," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
- Xiaoni You & Xiangying Li & Mika Sillanpää & Rong Wang & Chengyong Wu & Qiangqiang Xu, 2022. "Export of Dissolved Organic Carbon from the Source Region of Yangtze River in the Tibetan Plateau," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
- Daniel J. Vecellio & Oliver W. Frauenfeld, 2022. "Surface and sub-surface drivers of autumn temperature increase over Eurasian permafrost," Climatic Change, Springer, vol. 172(1), pages 1-18, May.
- Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
- Birgit Wild & Natalia Shakhova & Oleg Dudarev & Alexey Ruban & Denis Kosmach & Vladimir Tumskoy & Tommaso Tesi & Hanna Grimm & Inna Nybom & Felipe Matsubara & Helena Alexanderson & Martin Jakobsson & , 2022. "Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- E. Schuur & B. Abbott & W. Bowden & V. Brovkin & P. Camill & J. Canadell & J. Chanton & F. Chapin & T. Christensen & P. Ciais & B. Crosby & C. Czimczik & G. Grosse & J. Harden & D. Hayes & G. Hugelius, 2013. "Expert assessment of vulnerability of permafrost carbon to climate change," Climatic Change, Springer, vol. 119(2), pages 359-374, July.
More about this item
Keywords
permafrost degradation; wildfire; methane emissions; climate change; correlation analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14947-:d:970254. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.