IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v32y2021i3p447-467.html
   My bibliography  Save this article

Modeled (1990–2100) variations in active‐layer thickness and ice‐wedge activity near Salluit, Nunavik (Canada)

Author

Listed:
  • Samuel Gagnon
  • Michel Allard

Abstract

Simulations with a one‐dimensional heat transfer model (TONE) were performed to reproduce the near surface ground temperature regime in the four main types of soil profiles found in Narsajuaq River Valley (Nunavik, Canada) for the period 1990–2100. The permafrost thermal regime was simulated using climate data from a reanalysis (1948–2002), climate stations (1989–1991, 2002–2019) and simulations based on climate warming scenarios RCP4.5 and RCP8.5 (2019–2100). The model was calibrated based on extensive field measurements made between 1989 and 2019. The results were used to estimate when soil thermal contraction cracking will eventually stop and to forecast the melting of ice wedges due to active‐layer thickening. For the period 1990–2019, all soil profiles experienced cracking every year until 2006, when cracking became intermittent during a warm period before completely stopping in 2009–2010, after which cracking resumed during colder years. Ice‐wedge tops melted from 1992 to 2010 as the active layer thickened, indicating that top‐down ice‐wedge degradation can occur simultaneously with cracking and growth in width. Our predictions show that ice wedges in the valley will completely stop cracking between 2024 and 2096, first in sandy soils and later in soils with thicker organic horizons. The timing will also depend on greenhouse gas concentration trajectories. All ice wedges in the study area will probably experience some degradation of their main body before the end of the century, causing their roots to become relict ice by the end of the 21st century.

Suggested Citation

  • Samuel Gagnon & Michel Allard, 2021. "Modeled (1990–2100) variations in active‐layer thickness and ice‐wedge activity near Salluit, Nunavik (Canada)," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(3), pages 447-467, July.
  • Handle: RePEc:wly:perpro:v:32:y:2021:i:3:p:447-467
    DOI: 10.1002/ppp.2109
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2109
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuri Shur & Kenneth M. Hinkel & Frederick E. Nelson, 2005. "The transient layer: implications for geocryology and climate‐change science," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 16(1), pages 5-17, January.
    2. S. V. Kokelj & M. J. Palmer & T. C. Lantz & C. R. Burn, 2017. "Ground Temperatures and Permafrost Warming from Forest to Tundra, Tuktoyaktuk Coastlands and Anderson Plain, NWT, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 28(3), pages 543-551, July.
    3. Samuel Gagnon & Michel Allard, 2020. "Changes in ice‐wedge activity over 25 years of climate change near Salluit, Nunavik (northern Québec, Canada)," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(1), pages 69-84, January.
    4. Norikazu Matsuoka & Hanne H. Christiansen & Tatsuya Watanabe, 2018. "Ice‐wedge polygon dynamics in Svalbard: Lessons from a decade of automated multi‐sensor monitoring," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 29(3), pages 210-227, July.
    5. T. Zhang & K. Stamnes, 1998. "Impact of climatic factors on the active layer and permafrost at Barrow, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 9(3), pages 229-246, July.
    6. Baolai Wang & Michel Allard, 1995. "Recent climatic trend and thermal response of permafrost in Salluit, Northern Quebec, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 6(3), pages 221-233, July.
    7. Daniel Fortier & Michel Allard, 2005. "Frost‐cracking conditions, Bylot Island, eastern Canadian Arctic archipelago," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 16(2), pages 145-161, April.
    8. Dan Riseborough, 2007. "The effect of transient conditions on an equilibrium permafrost‐climate model," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(1), pages 21-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madeleine C. Garibaldi & Philip P. Bonnaventure & Scott F. Lamoureux, 2021. "Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 19-34, January.
    2. Stepan Prokopievich Varlamov & Yuri Borisovich Skachkov & Pavel Nikolaevich Skryabin, 2021. "Long-Term Variability in Ground Thermal State in Central Yakutia’s Tuymaada Valley," Land, MDPI, vol. 10(11), pages 1-22, November.
    3. Tracey A. Proverbs & Trevor C. Lantz & Gwich’in Tribal Council Department of Cultural Heritage, 2020. "Cumulative Environmental Impacts in the Gwich’in Cultural Landscape," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    4. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
    5. Michel Paquette & Daniel Fortier & Melissa Lafrenière & Warwick F. Vincent, 2020. "Periglacial slopewash dominated by solute transfers and subsurface erosion on a High Arctic slope," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 472-486, October.
    6. Ahmad Jan, 2022. "Modeling the role of lateral surface flow in low‐relief polygonal tundra," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(3), pages 214-225, July.
    7. Aleksandr Zhirkov & Maksim Sivtsev & Vasylii Lytkin & Anatolii Kirillin & Antoine Séjourné & Zhi Wen, 2023. "An Assessment of the Possibility of Restoration and Protection of Territories Disturbed by Thermokarst in Central Yakutia, Eastern Siberia," Land, MDPI, vol. 12(1), pages 1-17, January.
    8. Nicholson, Sarah R. & Kober, Leya R. & Atefrad, Pedram & Mwesigye, Aggrey & Dworkin, Seth B., 2021. "The influence of geometry on the performance of a helical steel pile as a geo-exchange system," Renewable Energy, Elsevier, vol. 172(C), pages 714-727.
    9. Sarah M. Strand & Hanne H. Christiansen & Margareta Johansson & Jonas Åkerman & Ole Humlum, 2021. "Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum‐Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 47-58, January.
    10. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Vasylii Lytkin & Alexander Suleymanov & Lilia Vinokurova & Stepan Grigorev & Victoriya Golomareva & Svyatoslav Fedorov & Aitalina Kuzmina & Igor Syromyatnikov, 2021. "Influence of Permafrost Landscapes Degradation on Livelihoods of Sakha Republic (Yakutia) Rural Communities," Land, MDPI, vol. 10(2), pages 1-21, January.
    12. Alexey Maslakov & Larisa Zotova & Nina Komova & Mikhail Grishchenko & Dmitry Zamolodchikov & Gennady Zelensky, 2021. "Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change," Land, MDPI, vol. 10(5), pages 1-14, April.
    13. Julian B. Murton, 2021. "What and where are periglacial landscapes?," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 186-212, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:32:y:2021:i:3:p:447-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.