IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4188-d254330.html
   My bibliography  Save this article

Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China

Author

Listed:
  • Wenjing Yang

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China)

  • Yibo Wang

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China)

  • Chansheng He

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    Department of Geography, Western Michigan University, Kalamazoo, MI 49008, USA)

  • Xingyan Tan

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China)

  • Zhibo Han

    (College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China)

Abstract

The agricultural pastoral ecotone (APE) in Northwest China is an ecological transition zone in the arid area with a very fragile ecosystem. In recent years, the ecosystem has deteriorated sharply, and increasing desertification has made the regional ecosystem more vulnerable and sensitive. In this study, we analyzed (using classical statistical methods) spatial and temporal variations in soil water content (SWC) from 14 September 2016 to 22 April 2019 for high and low vegetation in two grassland sites in Yanchi County, Ningxia. The results showed that the largest average seasonal SWC occurred in autumn. The SWC of the first three layers (0 ÷ 15 cm) of the soil profile responded strongly to precipitation, whereas the SWC in deeper soil (30 ÷ 50 cm) could only be recharged markedly after continuous precipitation. Additionally, the growing process of plants proved to be a cause of variability in soil moisture profiles. Vegetation degradation sped up the course of desertification and decreased soil organic carbon content. These changes left the soil increasingly desiccated and enhanced soil variability. Meanwhile, vegetation degradation also prompted changes in soil temperature and shortened the soil’s frozen time in winter. With the acceleration of global warming, if the process of vegetation degeneration continues and soil temperatures keep rising, the ecosystem is likely to undergo irreversible degradation.

Suggested Citation

  • Wenjing Yang & Yibo Wang & Chansheng He & Xingyan Tan & Zhibo Han, 2019. "Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China," Sustainability, MDPI, vol. 11(15), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4188-:d:254330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Visconti, Fernando & de Paz, José Miguel & Martínez, Delfina & Molina, Mª José, 2014. "Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils," Agricultural Water Management, Elsevier, vol. 132(C), pages 111-119.
    2. T. E. Osterkamp & V. E. Romanovsky, 1997. "Freezing of the Active Layer on the Coastal Plain of the Alaskan Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 8(1), pages 23-44, January.
    3. Virginia Strati & Matteo Albéri & Stefano Anconelli & Marica Baldoncini & Marco Bittelli & Carlo Bottardi & Enrico Chiarelli & Barbara Fabbri & Vincenzo Guidi & Kassandra Giulia Cristina Raptis & Dome, 2018. "Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray Spectroscopy and Soil–Crop System Models," Agriculture, MDPI, vol. 8(4), pages 1-17, April.
    4. V. E. Romanovsky & T. E. Osterkamp, 1997. "Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 8(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Haining Liu & Hong Wang & Xiaobing Li & Tengfei Qu & Yao Zhang & Yuting Lu & Yalei Yang & Jiahao Liu & Xili Zhao & Jingru Su & Dingsheng Luo, 2023. "Identification of Constructive Species and Degraded Plant Species in the Temperate Typical Grassland of Inner Mongolia Based on Hyperspectral Data," Agriculture, MDPI, vol. 13(2), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    2. Sasiri Bandara & Duane Froese & Trevor J. Porter & Fabrice Calmels, 2020. "Holocene pore‐ice δ18O and δ2H records from drained thermokarst lake basins in the Old Crow Flats, Yukon, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 497-508, October.
    3. Pan, Zhanpeng & Tong, Yu & Hou, Jingming & Zheng, Jian & Kang, Yongde & Wang, Yan & Cao, Changchong, 2021. "Hole irrigation process simulation using a soil water dynamical model with parameter inversion method," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Domínguez-Niño, Jesús María & Oliver-Manera, Jordi & Girona, Joan & Casadesús, Jaume, 2020. "Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Kyoungchul KIM & Jaeuk SIM & Tae-Hyung KIM, 2017. "Evaluations of the effects of soil properties and electrical conductivity on the water content reflectometer calibration for landfill cover soils," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(1), pages 10-17.
    6. Hajdu, Istvan & Yule, Ian & Bretherton, Mike & Singh, Ranvir & Hedley, Carolyn, 2019. "Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils," Agricultural Water Management, Elsevier, vol. 217(C), pages 332-345.
    7. Shi Qinglan & Shi Yujiao & Liu Xiaochen & Mei Shuli & Feng Lei, 2020. "A high-sensitivity multilayer soil moisture monitoring sensor based on a double high-frequency tuning detection circuit," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
    8. Wang, Jian & Li, Xin & Zhang, Zhenggui & Li, Xiaofei & Han, Yingchun & Feng, Lu & Yang, Beifang & Wang, Guoping & Lei, Yaping & Xiong, Shiwu & Xin, Minghua & Wang, Zhanbiao & Li, Yabing, 2022. "Application of image technology to simulate optimal frequency of automatic collection of volumetric soil water content data," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4188-:d:254330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.