IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v61y2014i2p164-178.html
   My bibliography  Save this article

Modeling and analysis of exhaustive probabilistic search

Author

Listed:
  • Timothy H. Chung
  • Rachel T. Silvestrini

Abstract

This article explores a probabilistic formulation for exhaustive search of a bounded area by a single searcher for a single static target. The searcher maintains an aggregate belief of the target's presence or absence in the search area, concluding with a positive or negative search decision on crossing of decision thresholds. The measure of search performance is defined as the expected time until a search decision is made as well as the probability of the search decision being correct. The searcher gathers observations using an imperfect detector, that is, one with false positive and negative errors, and integrates them in an iterative Bayesian manner. Analytic expressions for the Bayesian update recursion of the aggregate belief are given, with theoretical results describing the role of positive and negative detections, as well as sensitivity results for the effect of the detection errors on the aggregate belief evolution. Statistical studies via design of simulation experiments provide insights into the significant search parameters, including imperfect sensor characteristics, initial belief value, search decision threshold values, and the available prior probability information. Regression analysis yields statistical models to provide prescriptive guidance on the search performance as a function of these search parameters.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 164–178, 2014

Suggested Citation

  • Timothy H. Chung & Rachel T. Silvestrini, 2014. "Modeling and analysis of exhaustive probabilistic search," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 164-178, March.
  • Handle: RePEc:wly:navres:v:61:y:2014:i:2:p:164-178
    DOI: 10.1002/nav.21574
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21574
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. O. Koopman, 1956. "The Theory of Search. II. Target Detection," Operations Research, INFORMS, vol. 4(5), pages 503-531, October.
    2. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    2. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    3. T. C. E. Cheng & B. Kriheli & E. Levner & C. T. Ng, 2021. "Scheduling an autonomous robot searching for hidden targets," Annals of Operations Research, Springer, vol. 298(1), pages 95-109, March.
    4. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    5. Reiter, Johannes & Mauch, Franz & Jäckle, Josef, 1992. "Blocking transitions in lattice spin models with directed kinetic constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 184(3), pages 493-498.
    6. Hoam Chung & Elijah Polak & Johannes O. Royset & Shankar Sastry, 2011. "On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 804-820, December.
    7. Kompas, Tom & Chu, Long & Nguyen, Hoa Thi Minh, 2016. "A practical optimal surveillance policy for invasive weeds: An application to Hawkweed in Australia," Ecological Economics, Elsevier, vol. 130(C), pages 156-165.
    8. David E. Jeffcoat & Pavlo A. Krokhmal & Olesya I. Zhupanska, 2006. "Effects of cueing in cooperative search," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 814-821, December.
    9. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2002. "Detection of a Markovian target with optimization of the search efforts under generalized linear constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 117-142, March.
    10. Benoit Duvocelle & János Flesch & Hui Min Shi & Dries Vermeulen, 2021. "Search for a moving target in a competitive environment," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 547-557, June.
    11. Gregg S. Gonsalves & Forrest W. Crawford & Paul D. Cleary & Edward H. Kaplan & A. David Paltiel, 2018. "An Adaptive Approach to Locating Mobile HIV Testing Services," Medical Decision Making, , vol. 38(2), pages 262-272, February.
    12. Reiter, J. & Jäckle, J., 1995. "Dynamics of the symmetrically constrained Ising chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 215(3), pages 311-330.
    13. Abd-Elmoneim Anwar Mohamed & Mohamed Abd Allah El-Hadidy, 2013. "Optimal Multiplicative Generalized Linear Search Plan for a Discrete Random Walker," Journal of Optimization, Hindawi, vol. 2013, pages 1-13, July.
    14. Manisha Bhardwaj & Ronald van den Berg & Wei Ji Ma & Krešimir Josić, 2016. "Do People Take Stimulus Correlations into Account in Visual Search?," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
    15. Peter Kolesar & Kellen Leister & Daniel Stimpson & Ronald Woodaman, 2013. "A simple model of optimal clearance of improvised explosive devices," Annals of Operations Research, Springer, vol. 208(1), pages 451-468, September.
    16. Steve Alpern, 2002. "Rendezvous Search: A Personal Perspective," Operations Research, INFORMS, vol. 50(5), pages 772-795, October.
    17. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    18. Joseph B. Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
    19. Kompas, Tom & Chu, Long & McKirdy, Simon & Thomas, Melissa & Van Der Merwe, Johann, 2023. "Optimal post-border surveillance against invasive pests to protect a valuable nature reserve and island asset," Ecological Economics, Elsevier, vol. 208(C).
    20. Delavernhe, Florian & Jaillet, Patrick & Rossi, André & Sevaux, Marc, 2021. "Planning a multi-sensors search for a moving target considering traveling costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 469-482.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:61:y:2014:i:2:p:164-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.