IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v81y2015i3d10.1007_s00186-015-0499-8.html
   My bibliography  Save this article

Optimal discrete search with technological choice

Author

Listed:
  • Joseph B. Kadane

    (Carnegie Mellon University)

Abstract

Consider a search problem in which a stationary object is in one of $$L \epsilon \mathcal {N}$$ L ϵ N locations. Each location can be searched using one of $$T \epsilon \mathcal {N}$$ T ϵ N technologies, and each location-technology pair has a known associated cost and overlook probability. These quantities may depend on the number of times that the technology is applied to the location. This paper finds a search policy that maximizes the probability of finding the object given a constraint on the available budget. It also finds the policy that maximizes the probability of correctly stating at the end of a search where the object is. Additionally it exhibits another policy that minimizes the expected cost required to find the object and the optimal policy for stopping.

Suggested Citation

  • Joseph B. Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
  • Handle: RePEc:spr:mathme:v:81:y:2015:i:3:d:10.1007_s00186-015-0499-8
    DOI: 10.1007/s00186-015-0499-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-015-0499-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-015-0499-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph B. Kadane, 1971. "Optimal Whereabouts Search," Operations Research, INFORMS, vol. 19(4), pages 894-904, August.
    2. Keith P. Tognetti, 1968. "Letter to the Editor—An Optimal Strategy for a Whereabouts Search," Operations Research, INFORMS, vol. 16(1), pages 209-211, February.
    3. Moshe Kress & Kyle Lin & Roberto Szechtman, 2008. "Optimal discrete search with imperfect specificity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 539-549, December.
    4. Nah-Oak Song & Demosthenis Teneketzis, 2004. "Discrete search with multiple sensors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(1), pages 1-13, September.
    5. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    6. Scott Shorey Brown, 1980. "Optimal Search for a Moving Target in Discrete Time and Space," Operations Research, INFORMS, vol. 28(6), pages 1275-1289, December.
    7. Donald F. Mela, 1961. "Letter to the Editor---Information Theory and Search Theory as Special Cases of Decision Theory," Operations Research, INFORMS, vol. 9(6), pages 907-909, December.
    8. Bernard O. Koopman, 1957. "The Theory of Search," Operations Research, INFORMS, vol. 5(5), pages 613-626, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
    2. Baycik, N. Orkun & Sharkey, Thomas C. & Rainwater, Chase E., 2020. "A Markov Decision Process approach for balancing intelligence and interdiction operations in city-level drug trafficking enforcement," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    3. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    4. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    5. T. C. E. Cheng & B. Kriheli & E. Levner & C. T. Ng, 2021. "Scheduling an autonomous robot searching for hidden targets," Annals of Operations Research, Springer, vol. 298(1), pages 95-109, March.
    6. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    7. Delavernhe, Florian & Jaillet, Patrick & Rossi, André & Sevaux, Marc, 2021. "Planning a multi-sensors search for a moving target considering traveling costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 469-482.
    8. Michael Atkinson & Moshe Kress & Rutger-Jan Lange, 2016. "When Is Information Sufficient for Action? Search with Unreliable yet Informative Intelligence," Operations Research, INFORMS, vol. 64(2), pages 315-328, April.
    9. Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
    10. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
    11. Yan Xia & Rajan Batta & Rakesh Nagi, 2017. "Controlling a Fleet of Unmanned Aerial Vehicles to Collect Uncertain Information in a Threat Environment," Operations Research, INFORMS, vol. 65(3), pages 674-692, June.
    12. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2007. "Constrained minimax optimization of continuous search efforts for the detection of a stationary target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 589-601, September.
    13. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2002. "Detection of a Markovian target with optimization of the search efforts under generalized linear constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 117-142, March.
    14. Hohzaki, Ryusuke & Iida, Koji, 2001. "Optimal ambushing search for a moving target," European Journal of Operational Research, Elsevier, vol. 133(1), pages 120-129, August.
    15. Jake Clarkson & Kevin D. Glazebrook & Kyle Y. Lin, 2020. "Fast or Slow: Search in Discrete Locations with Two Search Modes," Operations Research, INFORMS, vol. 68(2), pages 552-571, March.
    16. Wilson, Kurt E. & Szechtman, Roberto & Atkinson, Michael P., 2011. "A sequential perspective on searching for static targets," European Journal of Operational Research, Elsevier, vol. 215(1), pages 218-226, November.
    17. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    18. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    19. Lawrence D. Stone & Alan R. Washburn, 1991. "Introduction special issue on search theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 465-468, August.
    20. Michael P. Atkinson & Moshe Kress & Roberto Szechtman, 2017. "To catch an intruder: Part A—uncluttered scenario," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 29-40, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:81:y:2015:i:3:d:10.1007_s00186-015-0499-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.