IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0149402.html
   My bibliography  Save this article

Do People Take Stimulus Correlations into Account in Visual Search?

Author

Listed:
  • Manisha Bhardwaj
  • Ronald van den Berg
  • Wei Ji Ma
  • Krešimir Josić

Abstract

In laboratory visual search experiments, distractors are often statistically independent of each other. However, stimuli in more naturalistic settings are often correlated and rarely independent. Here, we examine whether human observers take stimulus correlations into account in orientation target detection. We find that they do, although probably not optimally. In particular, it seems that low distractor correlations are overestimated. Our results might contribute to bridging the gap between artificial and natural visual search tasks.

Suggested Citation

  • Manisha Bhardwaj & Ronald van den Berg & Wei Ji Ma & Krešimir Josić, 2016. "Do People Take Stimulus Correlations into Account in Visual Search?," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
  • Handle: RePEc:plo:pone00:0149402
    DOI: 10.1371/journal.pone.0149402
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149402
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149402&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0149402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Baldassi & Nicola Megna & David C Burr, 2006. "Visual Clutter Causes High-Magnitude Errors," PLOS Biology, Public Library of Science, vol. 4(3), pages 1-1, February.
    2. B. O. Koopman, 1956. "The Theory of Search. II. Target Detection," Operations Research, INFORMS, vol. 4(5), pages 503-531, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    2. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    3. Kompas, Tom & Chu, Long & McKirdy, Simon & Thomas, Melissa & Van Der Merwe, Johann, 2023. "Optimal post-border surveillance against invasive pests to protect a valuable nature reserve and island asset," Ecological Economics, Elsevier, vol. 208(C).
    4. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    5. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    6. Timothy H. Chung & Rachel T. Silvestrini, 2014. "Modeling and analysis of exhaustive probabilistic search," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 164-178, March.
    7. Kompas, Tom & Chu, Long & Nguyen, Hoa Thi Minh, 2016. "A practical optimal surveillance policy for invasive weeds: An application to Hawkweed in Australia," Ecological Economics, Elsevier, vol. 130(C), pages 156-165.
    8. David E. Jeffcoat & Pavlo A. Krokhmal & Olesya I. Zhupanska, 2006. "Effects of cueing in cooperative search," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 814-821, December.
    9. Jordan Harold & Irene Lorenzoni & Thomas F. Shipley & Kenny R. Coventry, 2020. "Communication of IPCC visuals: IPCC authors’ views and assessments of visual complexity," Climatic Change, Springer, vol. 158(2), pages 255-270, January.
    10. Martin Graziano & Mariano Sigman, 2009. "The Spatial and Temporal Construction of Confidence in the Visual Scene," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-10, March.
    11. Peter Kolesar & Kellen Leister & Daniel Stimpson & Ronald Woodaman, 2013. "A simple model of optimal clearance of improvised explosive devices," Annals of Operations Research, Springer, vol. 208(1), pages 451-468, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0149402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.