IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v52y2005i6p481-492.html
   My bibliography  Save this article

Project scheduling under competition

Author

Listed:
  • Igor Averbakh
  • Vasilij Lebedev

Abstract

We introduce and investigate the problem of scheduling activities of a project by a firm that competes with another firm (the competitor) that has to perform the same project. The profit that the firm gets from each activity depends on whether the firm finishes the activity before or after its competitor. The objective is to maximize the guaranteed (worst‐case) profit. We assume that both the firm and the competitor can perform only one activity at a time. We perform a detailed complexity analysis of the problem, and consider problems with and without precedence constraints, with and without delay of the competitor, with general and equal processing times of activities. For polynomially solvable cases (which include, for example, all the considered problems without delay of the competitor), we present easily implementable and intuitive rules that allow us to obtain optimal schedules in linear or almost linear time. For some NP‐hard cases, we present pseudopolynomial algorithms and fast heuristics with worst‐case approximation guarantees. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.

Suggested Citation

  • Igor Averbakh & Vasilij Lebedev, 2005. "Project scheduling under competition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 481-492, September.
  • Handle: RePEc:wly:navres:v:52:y:2005:i:6:p:481-492
    DOI: 10.1002/nav.20091
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20091
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. A. Eiselt & Gilbert Laporte & Jacques-François Thisse, 1993. "Competitive Location Models: A Framework and Bibliography," Transportation Science, INFORMS, vol. 27(1), pages 44-54, February.
    2. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
    2. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    3. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    4. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    5. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    6. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    8. Michler, Jeffrey D. & Gramig, Benjamin M., 2012. "Differentiation in a Two-Dimensional Market with Endogenous Sequential Entry," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124845, Agricultural and Applied Economics Association.
    9. Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre (Ed.), 2000. "Jahresbericht 1999," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 522, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Drexl, Andreas & Nikulin, Yury, 2006. "Fuzzy multicriteria flight gate assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 605, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Dmitri Viattchenin, 2015. "Reducing the number of paths in a minimized project-network with given bounds on the durations of activities," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(4), pages 71-87.
    12. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    13. Rahul Swamy & Timothy Murray, 0. "Computing equilibrium in network utility-sharing and discrete election games," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-29.
    14. Artigues, Christian & Michelon, Philippe & Reusser, Stephane, 2003. "Insertion techniques for static and dynamic resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 149(2), pages 249-267, September.
    15. C-C Chang & R-S Chen, 2007. "Project advancement and its applications to multi-air-route quality budget allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1008-1020, August.
    16. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    17. Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2000. "A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints," Management Science, INFORMS, vol. 46(10), pages 1365-1384, October.
    18. Kemmoé Tchomté, Sylverin & Gourgand, Michel, 2009. "Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems," International Journal of Production Economics, Elsevier, vol. 121(1), pages 57-67, September.
    19. Bowen Guo & Wei Zhan, 2023. "Research on Integrated Scheduling of Multi-Mode Emergency Rescue for Flooding in Chemical Parks," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    20. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2019. "Matching supply and demand in a sharing economy: Classification, computational complexity, and application," European Journal of Operational Research, Elsevier, vol. 278(2), pages 578-595.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:52:y:2005:i:6:p:481-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.