IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i2p630-646.html
   My bibliography  Save this article

Robust university course timetabling problem subject to single and multiple disruptions

Author

Listed:
  • Gülcü, Ayla
  • Akkan, Can

Abstract

University course timetables are often finalized in stages, in between which, changes in the data make the earlier version infeasible. As each version is announced to the community, it is desirable to have a robust initial timetable, i.e. one that can be repaired with limited number of changes and yielding a new solution whose quality is degraded as little as possible. We define two versions of the robust timetabling problem, first one assuming that only one lecture is disrupted (its scheduled period ceasing to be feasible) and the second one assuming multiple lectures are disrupted. The objective of the algorithms is to identify a good Pareto front defined by the solution quality (penalty associated with soft-constraint violations) and the robustness measure. Two versions of a multi-objective simulated annealing (MOSA) algorithm is developed (MOSA-SD and MOSA-SAA, for single and multiple disruptions, respectively), with the difference being in the way robustness of a solution is estimated within the MOSA algorithm. Extensive computational experiments done using the International Timetabling Competition ITC-2007 data set confirm that MOSA-SD outperforms a genetic algorithm from the literature, and MOSA-SAA outperforms MOSA-SD when there are multiple disruptions. For MOSA-SAA an innovative solution network to structure feasible solutions for a set of disruption scenarios has been developed to efficiently perform sample average approximation (SAA) calculations, which can be adopted for other stochastic combinatorial optimization problems.

Suggested Citation

  • Gülcü, Ayla & Akkan, Can, 2020. "Robust university course timetabling problem subject to single and multiple disruptions," European Journal of Operational Research, Elsevier, vol. 283(2), pages 630-646.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:2:p:630-646
    DOI: 10.1016/j.ejor.2019.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171930935X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    2. Barry McCollum & Andrea Schaerf & Ben Paechter & Paul McMullan & Rhyd Lewis & Andrew J. Parkes & Luca Di Gaspero & Rong Qu & Edmund K. Burke, 2010. "Setting the Research Agenda in Automated Timetabling: The Second International Timetabling Competition," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 120-130, February.
    3. Lindahl, Michael & Stidsen, Thomas & Sørensen, Matias, 2019. "Quality recovering of university timetables," European Journal of Operational Research, Elsevier, vol. 276(2), pages 422-435.
    4. Mahmoud H. Alrefaei & Sigrún Andradóttir, 1999. "A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 45(5), pages 748-764, May.
    5. Antony E. Phillips & Cameron G. Walker & Matthias Ehrgott & David M. Ryan, 2017. "Integer programming for minimal perturbation problems in university course timetabling," Annals of Operations Research, Springer, vol. 252(2), pages 283-304, May.
    6. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    7. Varadharajan, T.K. & Rajendran, Chandrasekharan, 2005. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 772-795, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Akkan & Ayla Gülcü & Zeki Kuş, 2022. "Bi-criteria simulated annealing for the curriculum-based course timetabling problem with robustness approximation," Journal of Scheduling, Springer, vol. 25(4), pages 477-501, August.
    2. Raza, Syed Arshad, 2021. "Managing ethical requirements elicitation of complex socio-technical systems with critical systems thinking: A case of course-timetabling project," Technology in Society, Elsevier, vol. 66(C).
    3. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2022. "Introducing UniCorT: an iterative university course timetabling tool with MaxSAT," Journal of Scheduling, Springer, vol. 25(4), pages 371-390, August.
    4. Almeida, João & Santos, Daniel & Figueira, José Rui & Francisco, Alexandre P., 2024. "A multi-objective mixed integer linear programming model for thesis defence scheduling," European Journal of Operational Research, Elsevier, vol. 312(1), pages 92-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Akkan & Ayla Gülcü & Zeki Kuş, 2022. "Bi-criteria simulated annealing for the curriculum-based course timetabling problem with robustness approximation," Journal of Scheduling, Springer, vol. 25(4), pages 477-501, August.
    2. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    3. R. A. Oude Vrielink & E. A. Jansen & E. W. Hans & J. Hillegersberg, 2019. "Practices in timetabling in higher education institutions: a systematic review," Annals of Operations Research, Springer, vol. 275(1), pages 145-160, April.
    4. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2022. "Introducing UniCorT: an iterative university course timetabling tool with MaxSAT," Journal of Scheduling, Springer, vol. 25(4), pages 371-390, August.
    5. Felipe Rosa-Rivera & Jose I. Nunez-Varela & Cesar A. Puente-Montejano & Sandra E. Nava-Muñoz, 2021. "Measuring the complexity of university timetabling instances," Journal of Scheduling, Springer, vol. 24(1), pages 103-121, February.
    6. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    7. Asma Khalil Alkhamis & Manar Hosny, 2023. "A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza," Sustainability, MDPI, vol. 15(21), pages 1-37, October.
    8. Weihong Cai & Fengxi Duan, 2023. "Task Scheduling for Federated Learning in Edge Cloud Computing Environments by Using Adaptive-Greedy Dingo Optimization Algorithm and Binary Salp Swarm Algorithm," Future Internet, MDPI, vol. 15(11), pages 1-23, October.
    9. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    10. Adeinat, Hamza & Pazhani, Subramanian & Mendoza, Abraham & Ventura, Jose A., 2022. "Coordination of pricing and inventory replenishment decisions in a supply chain with multiple geographically dispersed retailers," International Journal of Production Economics, Elsevier, vol. 248(C).
    11. Kaixiang Zhu & Lily D. Li & Michael Li, 2021. "School Timetabling Optimisation Using Artificial Bee Colony Algorithm Based on a Virtual Searching Space Method," Mathematics, MDPI, vol. 10(1), pages 1-19, December.
    12. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    13. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    14. Shamsuddin Ahmed, 2013. "Performance of derivative free search ANN training algorithm with time series and classification problems," Computational Statistics, Springer, vol. 28(5), pages 1881-1914, October.
    15. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    16. Samer Hanoun & Asim Bhatti & Doug Creighton & Saeid Nahavandi & Phillip Crothers & Celeste Gloria Esparza, 2016. "Target coverage in camera networks for manufacturing workplaces," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1221-1235, December.
    17. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    18. Dennis S. Holm & Rasmus Ø. Mikkelsen & Matias Sørensen & Thomas J. R. Stidsen, 2022. "A graph-based MIP formulation of the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 405-428, August.
    19. Oliver Czibula & Hanyu Gu & Aaron Russell & Yakov Zinder, 2017. "A multi-stage IP-based heuristic for class timetabling and trainer rostering," Annals of Operations Research, Springer, vol. 252(2), pages 305-333, May.
    20. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:2:p:630-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.