IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v50y2003i5p388-411.html
   My bibliography  Save this article

The cost impact of using simple forecasting techniques in a supply chain

Author

Listed:
  • Heung‐Kyu Kim
  • Jennifer K. Ryan

Abstract

In this paper we consider an inventory model in which the retailer does not know the exact distribution of demand and thus must use some observed demand data to forecast demand. We present an extension of the basic newsvendor model that allows us to quantify the value of the observed demand data and the impact of suboptimal forecasting on the expected costs at the retailer. We demonstrate the approach through an example in which the retailer employs a commonly used forecasting technique, exponential smoothing. The model is also used to quantify the value of information and information sharing for a decoupled supply chain in which both the retailer and the manufacturer must forecast demand. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 388–411, 2003

Suggested Citation

  • Heung‐Kyu Kim & Jennifer K. Ryan, 2003. "The cost impact of using simple forecasting techniques in a supply chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(5), pages 388-411, August.
  • Handle: RePEc:wly:navres:v:50:y:2003:i:5:p:388-411
    DOI: 10.1002/nav.10065
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10065
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    2. Philip Kaminsky & Jayashankar M. Swaminathan, 2001. "Utilizing Forecast Band Refinement for Capacitated Production Planning," Manufacturing & Service Operations Management, INFORMS, vol. 3(1), pages 68-81, August.
    3. Warren H. Hausman, 1969. "Sequential Decision Problems: A Model to Exploit Existing Forecasters," Management Science, INFORMS, vol. 16(2), pages 93-111, October.
    4. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    5. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    6. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    7. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    8. Yossi Aviv, 2001. "The Effect of Collaborative Forecasting on Supply Chain Performance," Management Science, INFORMS, vol. 47(10), pages 1326-1343, October.
    9. Stephen C. Graves, 1999. "Addendum to "A Single-Item Inventory Model for a Nonstationary Demand Process"," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 174-174.
    10. George R. Murray, Jr. & Edward A. Silver, 1966. "A Bayesian Analysis of the Style Goods Inventory Problem," Management Science, INFORMS, vol. 12(11), pages 785-797, July.
    11. Donald L. Iglehart, 1964. "The Dynamic Inventory Problem with Unknown Demand Distribution," Management Science, INFORMS, vol. 10(3), pages 429-440, April.
    12. Ananth. V. Iyer & Mark E. Bergen, 1997. "Quick Response in Manufacturer-Retailer Channels," Management Science, INFORMS, vol. 43(4), pages 559-570, April.
    13. Frank Chen & Jennifer K. Ryan & David Simchi‐Levi, 2000. "The impact of exponential smoothing forecasts on the bullwhip effect," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(4), pages 269-286, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
    2. Rupesh Kumar Pati, 2014. "Modelling Bullwhip Effect in a Closed Loop Supply Chain with ARMA Demand," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 149-164, July.
    3. Michna, Zbigniew & Disney, Stephen M. & Nielsen, Peter, 2020. "The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts," Omega, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    2. Julia Miyaoka & Warren Hausman, 2004. "How a Base Stock Policy Using "Stale" Forecasts Provides Supply Chain Benefits," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 149-162, September.
    3. Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
    4. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    5. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    6. Xiangwen Lu & Jing-Sheng Song & Amelia Regan, 2006. "Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds," Operations Research, INFORMS, vol. 54(6), pages 1079-1097, December.
    7. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    8. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    9. Choi, Tsan-Ming (Jason) & Li, Duan & Yan, Houmin, 2006. "Quick response policy with Bayesian information updates," European Journal of Operational Research, Elsevier, vol. 170(3), pages 788-808, May.
    10. Junhai Ma & Jing Zhang & Liqing Zhu, 2018. "Study of the Bullwhip Effect under Various Forecasting Methods in Electronics Supply Chain with Dual Retailers considering Market Share," Complexity, Hindawi, vol. 2018, pages 1-19, January.
    11. Joseph M. Milner & Panos Kouvelis, 2002. "On the Complementary Value of Accurate Demand Information and Production and Supplier Flexibility," Manufacturing & Service Operations Management, INFORMS, vol. 4(2), pages 99-113, December.
    12. Kefeng Xu & Yang Dong & Yu Xia, 2014. "‘Too Little’ or ‘Too Late’: The Timing of Supply Chain Demand Collaboration," Working Papers 0203mss, College of Business, University of Texas at San Antonio.
    13. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    14. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    15. Choi, Tsan-Ming, 2007. "Pre-season stocking and pricing decisions for fashion retailers with multiple information updating," International Journal of Production Economics, Elsevier, vol. 106(1), pages 146-170, March.
    16. Chandra, Charu & Grabis, Janis, 2005. "Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand," European Journal of Operational Research, Elsevier, vol. 166(2), pages 337-350, October.
    17. Sen, Alper & Zhang, Alex X., 2009. "Style goods pricing with demand learning," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1058-1075, August.
    18. Bitran, Gabriel R. & Wadhwa, Hitendra K. S. (Hitendra Kumar Singh), 1996. "A methodology for demand learning with an application to the optimal pricing of seasonal products," Working papers 3898-96., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Li Chen & Wei Luo & Kevin Shang, 2017. "Measuring the Bullwhip Effect: Discrepancy and Alignment Between Information and Material Flows," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 36-51, February.
    20. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:50:y:2003:i:5:p:388-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.