IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i5p813-826.html
   My bibliography  Save this article

Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model

Author

Listed:
  • Katy S. Azoury

    (Department of Decision Sciences, College of Business, San Francisco State University, San Francisco, California 94132)

  • Julia Miyaoka

    (Department of Decision Sciences, College of Business, San Francisco State University, San Francisco, California 94132)

Abstract

In this paper, we consider a periodic review inventory problem where demand in each period is modeled by linear regression. We use a Bayesian formulation to update the regression parameters as new information becomes available. We find that a state-dependent base-stock policy is optimal and we give structural results. One interesting finding is that our structural results are not analogous to classical results in Bayesian inventory research. This departure from classical results is due to the role that the independent variables play in the Bayesian regression formulation. Because of the computational complexity of the optimal policy, we propose a combination of two heuristics that simplifies the Bayesian inventory problem. Through analytical and numerical evaluation, we find that the heuristics provide near-optimal results.

Suggested Citation

  • Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:813-826
    DOI: 10.1287/mnsc.1080.0980
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1080.0980
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1080.0980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuel Karlin, 1960. "Dynamic Inventory Policy with Varying Stochastic Demands," Management Science, INFORMS, vol. 6(3), pages 231-258, April.
    2. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    3. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    4. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    5. James T. Treharne & Charles R. Sox, 2002. "Adaptive Inventory Control for Nonstationary Demand and Partial Information," Management Science, INFORMS, vol. 48(5), pages 607-624, May.
    6. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    7. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    8. Donald L. Iglehart, 1964. "The Dynamic Inventory Problem with Unknown Demand Distribution," Management Science, INFORMS, vol. 10(3), pages 429-440, April.
    9. Ananth. V. Iyer & Mark E. Bergen, 1997. "Quick Response in Manufacturer-Retailer Channels," Management Science, INFORMS, vol. 43(4), pages 559-570, April.
    10. Arthur F. Veinott, Jr., 1965. "Optimal Policy for a Multi-Product, Dynamic, Nonstationary Inventory Problem," Management Science, INFORMS, vol. 12(3), pages 206-222, November.
    11. Li Chen & Erica L. Plambeck, 2008. "Dynamic Inventory Management with Learning About the Demand Distribution and Substitution Probability," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 236-256, May.
    12. William S. Lovejoy, 1990. "Myopic Policies for Some Inventory Models with Uncertain Demand Distributions," Management Science, INFORMS, vol. 36(6), pages 724-738, June.
    13. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    14. Katy S. Azoury & Bruce L. Miller, 1984. "A Comparison of the Optimal Ordering Levels of Bayesian and Non-Bayesian Inventory Models," Management Science, INFORMS, vol. 30(8), pages 993-1003, August.
    15. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    16. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    17. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
    18. Xiangwen Lu & Jing-Sheng Song & Amelia Regan, 2006. "Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds," Operations Research, INFORMS, vol. 54(6), pages 1079-1097, December.
    19. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    20. Tetsuo Iida & Paul H. Zipkin, 2006. "Approximate Solutions of a Dynamic Forecast-Inventory Model," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 407-425, October.
    21. Giora Harpaz & Wayne Y. Lee & Robert L. Winkler, 1982. "Learning, Experimentation, and the Optimal Output Decisions of a Competitive Firm," Management Science, INFORMS, vol. 28(6), pages 589-603, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    2. Katy S. Azoury & Julia Miyaoka, 2014. "Sequential learning versus no learning in Bayesian regression models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 532-548, October.
    3. Zhang, Jian & Zhang, Juliang & Hua, Guowei, 2016. "Multi-period inventory games with information update," International Journal of Production Economics, Elsevier, vol. 174(C), pages 119-127.
    4. Lee, Yun Shin, 2014. "Management of a periodic-review inventory system using Bayesian model averaging when new marketing efforts are made," International Journal of Production Economics, Elsevier, vol. 158(C), pages 278-289.
    5. Prak, Dennis & Teunter, Ruud, 2019. "A general method for addressing forecasting uncertainty in inventory models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 224-238.
    6. Yu, Yugang & Luo, Yifei & Shi, Ye, 2022. "Adoption of blockchain technology in a two-stage supply chain: Spillover effect on workforce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Li, Tianyun & Fang, Weiguo & Baykal-Gürsoy, Melike, 2021. "Two-stage inventory management with financing under demand updates," International Journal of Production Economics, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwen Lu & Jing-Sheng Song & Amelia Regan, 2006. "Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds," Operations Research, INFORMS, vol. 54(6), pages 1079-1097, December.
    2. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    3. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    4. Arnab Bisi & Maqbool Dada, 2007. "Dynamic learning, pricing, and ordering by a censored newsvendor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 448-461, June.
    5. Joseph M. Milner & Panos Kouvelis, 2002. "On the Complementary Value of Accurate Demand Information and Production and Supplier Flexibility," Manufacturing & Service Operations Management, INFORMS, vol. 4(2), pages 99-113, December.
    6. Yossi Aviv & Awi Federgruen, 2001. "Design for Postponement: A Comprehensive Characterization of Its Benefits Under Unknown Demand Distributions," Operations Research, INFORMS, vol. 49(4), pages 578-598, August.
    7. Mila Nambiar & David Simchi‐Levi & He Wang, 2021. "Dynamic Inventory Allocation with Demand Learning for Seasonal Goods," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 750-765, March.
    8. Zhang, Jian & Zhang, Juliang & Hua, Guowei, 2016. "Multi-period inventory games with information update," International Journal of Production Economics, Elsevier, vol. 174(C), pages 119-127.
    9. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    10. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
    11. Satya S. Malladi & Alan L. Erera & Chelsea C. White, 2023. "Inventory control with modulated demand and a partially observed modulation process," Annals of Operations Research, Springer, vol. 321(1), pages 343-369, February.
    12. Harun Avci & Kagan Gokbayrak & Emre Nadar, 2020. "Structural Results for Average‐Cost Inventory Models with Markov‐Modulated Demand and Partial Information," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 156-173, January.
    13. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    14. Gaalman, Gerard & Disney, Stephen M., 2009. "On bullwhip in a family of order-up-to policies with ARMA(2,2) demand and arbitrary lead-times," International Journal of Production Economics, Elsevier, vol. 121(2), pages 454-463, October.
    15. Tan, Tarkan & Gullu, Refik & Erkip, Nesim, 2007. "Modelling imperfect advance demand information and analysis of optimal inventory policies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 897-923, March.
    16. Glenn, David & Bisi, Arnab & Puterman, Martin L., 2004. "The Bayesian Newsvendors in Supply Chains with Unobserved Lost Sales," Working Papers 04-0110, University of Illinois at Urbana-Champaign, College of Business.
    17. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    18. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    19. Joseph M. Milner & Panos Kouvelis, 2005. "Order Quantity and Timing Flexibility in Supply Chains: The Role of Demand Characteristics," Management Science, INFORMS, vol. 51(6), pages 970-985, June.
    20. Arnab Bisi & Maqbool Dada & Surya Tokdar, 2011. "A Censored-Data Multiperiod Inventory Problem with Newsvendor Demand Distributions," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 525-533, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:813-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.