IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021005500.html
   My bibliography  Save this article

Minimal repair models with non-negligible repair time

Author

Listed:
  • Liu, Peng
  • Wang, Guanjun

Abstract

In existing minimal repair models, it is usually supposed that the repair time of systems is negligible, and thus the occurrences of breakdowns obey non-homogeneous Poisson Process within a replacement interval. However, for the case that the mean working time of a system is not far longer than its mean repair time, ignoring repair time may lead to a large error in calculating the system long-run average cost rate. In this paper, taking random repair time into account, we generalize several calendar time-based minimal repair policies, including periodic replacement policy with minimal repair, reference time policy, and bivariate T−N maintenance policy. By using probability decomposition technique and indicator function method, the system long-run average cost rate under each minimal repair policy is gained explicitly. Various special cases are discussed. An application of the periodic replacement policy with minimal repair is presented in warranty field. Finally, a comprehensive sensitivity analysis is conducted to investigate the relative error on the long-run average cost rate caused by ignoring repair time, and to compare calendar time-based minimal repair policies with age-based minimal repair policies in terms of the long-run average cost rate.

Suggested Citation

  • Liu, Peng & Wang, Guanjun, 2022. "Minimal repair models with non-negligible repair time," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005500
    DOI: 10.1016/j.ress.2021.108046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Arnold & Stefanka Chukova & Yu Hayakawa & Sarah Marshall, 2019. "Warranty cost analysis with an alternating geometric process," Journal of Risk and Reliability, , vol. 233(4), pages 698-715, August.
    2. Xiaolin Wang & Chun Su, 2016. "A two-dimensional preventive maintenance strategy for items sold with warranty," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5901-5915, October.
    3. Zheng, Rui & Zhou, Yifan, 2021. "Comparison of three preventive maintenance warranty policies for products deteriorating with age and a time-varying covariate," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Ito, Kodo & Mizutani, Satoshi & Nakagawa, Toshio, 2020. "Optimal inspection models with minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. C. Tilquin & R. Cléroux, 1975. "Periodic replacement with minimal repair at failure and adjustment costs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(2), pages 243-254, June.
    6. Wang, Xiaolin & Zhao, Xiujie & Liu, Bin, 2020. "Design and pricing of extended warranty menus based on the multinomial logit choice model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 237-250.
    7. Chien, Yu-Hung & Zhang, Zhe George & Yin, Xiaoling, 2019. "On optimal preventive-maintenance policy for generalized Polya process repairable products under free-repair warranty," European Journal of Operational Research, Elsevier, vol. 279(1), pages 68-78.
    8. Marzieh Hashemi & Majid Asadi, 2021. "Optimal preventive maintenance of coherent systems: A generalized Pólya process approach," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1266-1280, November.
    9. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    10. Yuan-Lin Zhang & Guan-Jun Wang, 2017. "An extended geometric process repair model with delayed repair and slight failure type," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 427-437, January.
    11. Qingan Qiu & Lirong Cui & Dejing Kong, 2019. "Availability analysis and optimal inspection policy for systems with neglected down time," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(11), pages 2787-2809, June.
    12. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    13. Blischke, W. R. & Murthy, D. N. P., 1992. "Product warranty management -- I: A taxonomy for warranty policies," European Journal of Operational Research, Elsevier, vol. 62(2), pages 127-148, October.
    14. Qiu, Qingan & Cui, Lirong & Wu, Bei, 2020. "Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    15. Minjae Park, 2020. "Determination of Optimal Warranty Period with Preventive Maintenance Actions for Items from Heterogeneous Populations," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, November.
    16. Badía, F.G. & Berrade, M.D. & Lee, Hyunju, 2020. "An study of cost effective maintenance policies: Age replacement versus replacement after N minimal repairs," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    17. Liu, Peng & Wang, Guanjun & Su, Peng, 2021. "Optimal maintenance strategies for warranty products with limited repair time and limited repair number," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Zhu, Xiaoyan & Jiao, Can & Yuan, Tao, 2019. "Optimal decisions on product reliability, sales and promotion under nonrenewable warranties," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louzada, Francisco & Tomazella, Vera L.D. & Gonzatto, Oilson A. & Bochio, Gustavo & Milani, Eder A. & Ferreira, Paulo H. & Ramos, Pedro L., 2022. "Reliability assessment of repairable systems with series–parallel structure subjected to hierarchical competing risks under minimal repair regime," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Peng & Wang, Guanjun, 2023. "Generalized non-renewing replacement warranty policy and an age-based post-warranty maintenance strategy," European Journal of Operational Research, Elsevier, vol. 311(2), pages 567-580.
    2. Zhu, Ying & Xia, Tangbin & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Optimal maintenance service strategy for OEM entering competitive MRO market under opposite patterns," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Huang, Yeu-Shiang & Fang, Chih-Chiang & Lu, Chang-Ming & (Bill) Tseng, Tzu-Liang, 2022. "Optimal Warranty Policy for Consumer Electronics with Dependent Competing Failure Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Li, Ting & He, Shuguang & Zhao, Xiujie & Liu, Bin, 2023. "Warranty service contracts design for deteriorating products with maintenance duration commitments," International Journal of Production Economics, Elsevier, vol. 264(C).
    5. Chengye Ma & Yongjun Du & Lijun Shang & Li Yang & Kaiye Gao, 2023. "Random Maintenance Strategy Modeling of Warranted Products with Reliability Heterogeneity," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    6. Hooti, Fatemeh & Ahmadi, Jafar & Longobardi, Maria, 2020. "Optimal extended warranty length with limited number of repairs in the warranty period," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Safaei, Fatemeh & Taghipour, Sharareh, 2022. "Optimal preventive maintenance for repairable products with three types of failures sold under a renewable hybrid FRW/PRW policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Chien, Yu-Hung & Zhang, Zhe George & Yin, Xiaoling, 2019. "On optimal preventive-maintenance policy for generalized Polya process repairable products under free-repair warranty," European Journal of Operational Research, Elsevier, vol. 279(1), pages 68-78.
    10. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li, 2023. "Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Lijun Shang & Baoliang Liu & Kaiye Gao & Li Yang, 2023. "Random Warranty and Replacement Models Customizing from the Perspective of Heterogeneity," Mathematics, MDPI, vol. 11(15), pages 1-22, July.
    12. Li, Ting & He, Shuguang & Zhao, Xiujie, 2022. "Optimal warranty policy design for deteriorating products with random failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2021. "Optimal warranty policy with inspection for heterogeneous, stochastically degrading items," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1142-1152.
    14. Lijun Shang & Yongjun Du & Cang Wu & Chengye Ma, 2022. "A Bivariate Optimal Random Replacement Model for the Warranted Product with Job Cycles," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
    15. Ji Hwan Cha & Maxim Finkelstein, 2022. "A new warranty policy for heterogeneous items subject to monotone degradation processes," Journal of Risk and Reliability, , vol. 236(1), pages 55-65, February.
    16. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Hui Chen & Jie Chen & Yangyang Lai & Xiaoqi Yu & Lijun Shang & Rui Peng & Baoliang Liu, 2024. "Discrete Random Renewable Replacements after the Expiration of Collaborative Preventive Maintenance Warranty," Mathematics, MDPI, vol. 12(18), pages 1-21, September.
    19. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.