A new framework of complex system reliability with imperfect maintenance policy
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-020-03852-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hoang Pham, 2006. "Software Reliability Modeling," Springer Series in Reliability Engineering, in: System Software Reliability, chapter 5, pages 153-177, Springer.
- Z. Sinuany-Stern, 1999. "Reliability and maintenance in production control ‐ an introduction," Annals of Operations Research, Springer, vol. 91(0), pages 1-10, January.
- Mengmeng Zhu & Hoang Pham, 2019. "A Novel System Reliability Modeling of Hardware, Software, and Interactions of Hardware and Software," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
- Hoang Pham & Hongzhou Wang, 2000. "Optimal (τ, T) opportunistic maintenance of a k‐out‐of‐n:G system with imperfect PM and partial failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 223-239, April.
- Yuka Minamino & Shinji Inoue & Shigeru Yamada, 2016. "NHPP-based change-point modeling for software reliability assessment and its application to software development management," Annals of Operations Research, Springer, vol. 244(1), pages 85-101, September.
- Wang, Jia & Bai, Guanghan & Li, Zhigang & Zuo, Ming J., 2020. "A general discrete degradation model with fatal shocks and age- and state-dependent nonfatal shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Mengmeng Zhu & Hoang Pham, 2018. "A multi-release software reliability modeling for open source software incorporating dependent fault detection process," Annals of Operations Research, Springer, vol. 269(1), pages 773-790, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sadiya & Mangey Ram & Akshay Kumar, 2022. "A New Approach to Compute System Reliability with Three-Serially Linked Modules," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
- Dahye Lee & Inhong Chang & Hoang Pham, 2023. "Study of a New Software Reliability Growth Model under Uncertain Operating Environments and Dependent Failures," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nupur Goyal & Vikas Kumar Roy & Mangey Ram, 2022. "Mathematical modelling of embedded systems under network failures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 604-614, April.
- P. K. Kapur & Saurabh Panwar & Ompal Singh & Vivek Kumar, 2022. "Joint optimization of software time-to-market and testing duration using multi-attribute utility theory," Annals of Operations Research, Springer, vol. 312(1), pages 305-332, May.
- Mengmeng Zhu & Hoang Pham, 2019. "A Novel System Reliability Modeling of Hardware, Software, and Interactions of Hardware and Software," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
- Luo, Ming & Wu, Shaomin, 2019. "A comprehensive analysis of warranty claims and optimal policies," European Journal of Operational Research, Elsevier, vol. 276(1), pages 144-159.
- Vibha Verma & Sameer Anand & P. K. Kapur & Anu G. Aggarwal, 2022. "Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2429-2441, October.
- Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Xiao Yu & Armagan Bayram, 2021. "Managing capacity for virtual and office appointments in chronic care," Health Care Management Science, Springer, vol. 24(4), pages 742-767, December.
- Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
- Sarang Deo & Seyed Iravani & Tingting Jiang & Karen Smilowitz & Stephen Samuelson, 2013. "Improving Health Outcomes Through Better Capacity Allocation in a Community-Based Chronic Care Model," Operations Research, INFORMS, vol. 61(6), pages 1277-1294, December.
- Mengmeng Zhu & Hoang Pham, 2022. "A generalized multiple environmental factors software reliability model with stochastic fault detection process," Annals of Operations Research, Springer, vol. 311(1), pages 525-546, April.
- Triet Pham & Hoang Pham, 2019. "A generalized software reliability model with stochastic fault-detection rate," Annals of Operations Research, Springer, vol. 277(1), pages 83-93, June.
- Sourav Sinha & Neeraj Kumar Goyal & Rajib Mall, 2019. "Survey of combined hardware–software reliability prediction approaches from architectural and system failure viewpoint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 453-474, August.
- Subhashis Chatterjee & Ankur Shukla & Hoang Pham, 2019. "Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point," Journal of Risk and Reliability, , vol. 233(2), pages 246-256, April.
- Wang, Jia & Han, Xu & Zhang, Yun-an & Bai, Guanghan, 2021. "Modeling the varying effects of shocks for a multi-stage degradation process," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 2020. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 196-207, July.
- Michael Patriksson & Ann-Brith Strömberg & Adam Wojciechowski, 2015. "The stochastic opportunistic replacement problem, part II: a two-stage solution approach," Annals of Operations Research, Springer, vol. 224(1), pages 51-75, January.
- Subhashis Chatterjee & Ankur Shukla, 2017. "An Ideal Software Release Policy for an Improved Software Reliability Growth Model Incorporating Imperfect Debugging with Fault Removal Efficiency and Change Point," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-21, June.
- Jia Huang & Hu-Chen Liu & Chun-Yan Duan & Ming-Shun Song, 2022. "An improved reliability model for FMEA using probabilistic linguistic term sets and TODIM method," Annals of Operations Research, Springer, vol. 312(1), pages 235-258, May.
More about this item
Keywords
Complex system reliability modeling; Interactions of software and hardware; Software-induced hardware failures; Hardware-induced software failures; Markov process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:312:y:2022:i:1:d:10.1007_s10479-020-03852-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.