IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v45y1998i3p313-326.html
   My bibliography  Save this article

A new appointment rule for a single‐server, multiple‐customer service system

Author

Listed:
  • Kum Khiong Yang
  • Mun Ling Lau
  • Ser Aik Quek

Abstract

This paper proposes a new appointment rule for the single‐server, multiple‐customer service system. Unlike previous appointment rules, which perform well only in specific service environments, the new rule can be parameterized to perform well in different service environments. The new appointment rule is presented as a mathematical function of four environmental parameters, namely, the coefficient of variation of the service time, the percentage of customers' no‐shows, the number of appointments per service session, and the cost ratio between the server's idle and customers' waiting cost per unit time. Once the values of these environmental parameters are estimated, the new appointment rule can be parameterized to perform well. The results show that new rule performs either as well as or better than existing appointment rules in a wide range of service environments. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 313–326, 1998

Suggested Citation

  • Kum Khiong Yang & Mun Ling Lau & Ser Aik Quek, 1998. "A new appointment rule for a single‐server, multiple‐customer service system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 313-326, April.
  • Handle: RePEc:wly:navres:v:45:y:1998:i:3:p:313-326
    DOI: 10.1002/(SICI)1520-6750(199804)45:33.0.CO;2-A
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199804)45:33.0.CO;2-A
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199804)45:33.0.CO;2-A?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chrwan-Jyh Ho & Hon-Shiang Lau, 1992. "Minimizing Total Cost in Scheduling Outpatient Appointments," Management Science, INFORMS, vol. 38(12), pages 1750-1764, December.
    2. A. Soriano, 1966. "Comparison of Two Scheduling Systems," Operations Research, INFORMS, vol. 14(3), pages 388-397, June.
    3. Vissers, J. & Wijngaard, J., 1979. "The outpatient appointment system: Design of a simulation study," European Journal of Operational Research, Elsevier, vol. 3(6), pages 459-463, November.
    4. Norman T. J. Bailey, 1954. "Queueing for Medical Care," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 3(3), pages 137-145, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    2. Tugba Cayirli & Kum Khiong Yang & Ser Aik Quek, 2012. "A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 682-697, July.
    3. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    2. Tugba Cayirli & Kum Khiong Yang & Ser Aik Quek, 2012. "A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 682-697, July.
    3. Qingxia Kong & Chung-Yee Lee & Chung-Piaw Teo & Zhichao Zheng, 2013. "Scheduling Arrivals to a Stochastic Service Delivery System Using Copositive Cones," Operations Research, INFORMS, vol. 61(3), pages 711-726, June.
    4. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    5. Ho, Chrwan-Jyh & Lau, Hon-Shiang, 1999. "Evaluating the impact of operating conditions on the performance of appointment scheduling rules in service systems," European Journal of Operational Research, Elsevier, vol. 112(3), pages 542-553, February.
    6. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    7. Tugba Cayirli & Kum Khiong Yang, 2019. "Altering the Environment to Improve Appointment System Performance," Service Science, INFORMS, vol. 11(2), pages 138-154, June.
    8. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    9. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    10. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    11. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    12. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    13. Thu-Ba T. Nguyen & Appa Iyer Sivakumar & Stephen C. Graves, 2017. "Scheduling rules to achieve lead-time targets in outpatient appointment systems," Health Care Management Science, Springer, vol. 20(4), pages 578-589, December.
    14. Qu, Xiuli & Rardin, Ronald L. & Williams, Julie Ann S. & Willis, Deanna R., 2007. "Matching daily healthcare provider capacity to demand in advanced access scheduling systems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 812-826, December.
    15. Tsai, Pei-Fang Jennifer & Teng, Guei-Yu, 2014. "A stochastic appointment scheduling system on multiple resources with dynamic call-in sequence and patient no-shows for an outpatient clinic," European Journal of Operational Research, Elsevier, vol. 239(2), pages 427-436.
    16. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.
    17. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    18. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    19. De Vuyst, Stijn & Bruneel, Herwig & Fiems, Dieter, 2014. "Computationally efficient evaluation of appointment schedules in health care," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1142-1154.
    20. S. Ayca Erdogan & Brian Denton, 2013. "Dynamic Appointment Scheduling of a Stochastic Server with Uncertain Demand," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 116-132, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:45:y:1998:i:3:p:313-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.