IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v217y2014i1p1-2910.1007-s10479-014-1543-4.html
   My bibliography  Save this article

Optimal maintenance scheduling for a complex manufacturing system subject to deterioration

Author

Listed:
  • Reza Ahmadi

Abstract

We address the problem of determining inspection strategy and replacement policy for a deteriorating complex multi-component manufacturing system whose state is partially observable. We develop inspection and replacement scheduling models and other simple maintenance scheduling models via employing an imperfect repair model coupled with a damage process induced by operational conditions. The system state in performance of the imperfectly repaired system is modelled using a proportional intensity model incorporating a damage process and a virtual age process caused by repair. The system is monitored at periodic times and maintenance actions are carried out in response to the observed system state. Decisions to perform imperfect repair and replacement are based on the system state and crossing of a replacement threshold. The model proposed here aims at joint determination of a cost-optimal inspection and replacement policy along with an optimal level of maintenance which result in low maintenance cost and high operational performance and reliability of the system. To demonstrate the use of the model in practical applications a numerical example is provided. Solutions to optimal system parameters are obtained and the response of the model to these parameters is examined. Finally some features of the model are demonstrated. The approach presented provides a framework so that different scenario can be explored. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Reza Ahmadi, 2014. "Optimal maintenance scheduling for a complex manufacturing system subject to deterioration," Annals of Operations Research, Springer, vol. 217(1), pages 1-29, June.
  • Handle: RePEc:spr:annopr:v:217:y:2014:i:1:p:1-29:10.1007/s10479-014-1543-4
    DOI: 10.1007/s10479-014-1543-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-014-1543-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-014-1543-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kijima, Masaaki & Morimura, Hidenori & Suzuki, Yasusuke, 1988. "Periodical replacement problem without assuming minimal repair," European Journal of Operational Research, Elsevier, vol. 37(2), pages 194-203, November.
    2. Ahmadi, Reza & Newby, Martin, 2011. "Maintenance scheduling of a manufacturing system subject to deterioration," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1411-1420.
    3. Ruey Yeh & Wen Chang & Hui-Chiung Lo, 2010. "Optimal threshold values of age and two-phase maintenance policy for leased equipments using age reduction method," Annals of Operations Research, Springer, vol. 181(1), pages 171-183, December.
    4. E. Collani, 1999. "Control of production processes subjectto random shocks," Annals of Operations Research, Springer, vol. 91(0), pages 289-304, January.
    5. Berrade, M.D. & Cavalcante, Cristiano A.V. & Scarf, Philip A., 2012. "Maintenance scheduling of a protection system subject to imperfect inspection and replacement," European Journal of Operational Research, Elsevier, vol. 218(3), pages 716-725.
    6. Rui Jiang & Michael Kim & Viliam Makis, 2012. "A Bayesian model and numerical algorithm for CBM availability maximization," Annals of Operations Research, Springer, vol. 196(1), pages 333-348, July.
    7. Edward P. C. Kao, 1973. "Optimal Replacement Rules when Changes of State are Semi-Markovian," Operations Research, INFORMS, vol. 21(6), pages 1231-1249, December.
    8. Shey-Huei Sheu & Chin-Chih Chang & Yu-Hung Chien, 2011. "Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks," Annals of Operations Research, Springer, vol. 186(1), pages 317-329, June.
    9. H. Wang & H. Pham, 1999. "Some maintenance models and availability withimperfect maintenance in production systems," Annals of Operations Research, Springer, vol. 91(0), pages 305-318, January.
    10. Cyrus Derman, 1962. "On Sequential Decisions and Markov Chains," Management Science, INFORMS, vol. 9(1), pages 16-24, October.
    11. Chen, Mingchih & Feldman, Richard M., 1997. "Optimal replacement policies with minimal repair and age-dependent costs," European Journal of Operational Research, Elsevier, vol. 98(1), pages 75-84, April.
    12. Kahle, Waltraud, 2007. "Optimal maintenance policies in incomplete repair models," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 563-565.
    13. Lugtigheid, Diederik & Banjevic, Dragan & Jardine, Andrew K.S., 2008. "System repairs: When to perform and what to do?," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 604-615.
    14. C. Teresa Lam & R. H. Yeh, 1994. "Optimal replacement policies for multistate deteriorating systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 303-315, April.
    15. Peter Kolesar, 1966. "Minimum Cost Replacement Under Markovian Deterioration," Management Science, INFORMS, vol. 12(9), pages 694-706, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zhenglin & Parlikad, Ajith Kumar, 2020. "Predictive group maintenance for multi-system multi-component networks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Zhang, Mimi & Gaudoin, Olivier & Xie, Min, 2015. "Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 245(2), pages 531-541.
    3. Caiyun Niu & Xiaolin Liang & Bingfeng Ge & Xue Tian & Yingwu Chen, 2016. "Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process," Annals of Operations Research, Springer, vol. 244(1), pages 49-66, September.
    4. Phan, Dzung T. & Zhu, Yada, 2015. "Multi-stage optimization for periodic inspection planning of geo-distributed infrastructure systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 797-804.
    5. Joby K. Jose & M. Drisya, 2020. "Time-dependent stress–strength reliability models based on phase type distribution," Computational Statistics, Springer, vol. 35(3), pages 1345-1371, September.
    6. Ahmadi, Reza & Fouladirad, Mitra, 2017. "Maintenance planning for a deteriorating production process," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 108-118.
    7. Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Nooshin Salari & Viliam Makis, 2020. "Joint maintenance and just-in-time spare parts provisioning policy for a multi-unit production system," Annals of Operations Research, Springer, vol. 287(1), pages 351-377, April.
    9. Yi, He & Cui, Lirong, 2017. "Distribution and availability for aggregated second-order semi-Markov ternary system with working time omission," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 50-60.
    10. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    12. Robert Bucki & Petr Suchánek, 2017. "Modelling Decision-Making Processes in the Management Support of the Manufacturing Element in the Logistic Supply Chain," Complexity, Hindawi, vol. 2017, pages 1-15, June.
    13. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Reza & Newby, Martin, 2011. "Maintenance scheduling of a manufacturing system subject to deterioration," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1411-1420.
    2. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    3. Panagiotidou, Sofia & Nenes, George, 2009. "An economically designed, integrated quality and maintenance model using an adaptive Shewhart chart," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 732-741.
    4. Panagiotidou, Sofia & Tagaras, George, 2007. "Optimal preventive maintenance for equipment with two quality states and general failure time distributions," European Journal of Operational Research, Elsevier, vol. 180(1), pages 329-353, July.
    5. Nooshin Salari & Viliam Makis, 2020. "Joint maintenance and just-in-time spare parts provisioning policy for a multi-unit production system," Annals of Operations Research, Springer, vol. 287(1), pages 351-377, April.
    6. Ahmadi, Reza & Fouladirad, Mitra, 2017. "Maintenance planning for a deteriorating production process," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 108-118.
    7. Caiyun Niu & Xiaolin Liang & Bingfeng Ge & Xue Tian & Yingwu Chen, 2016. "Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process," Annals of Operations Research, Springer, vol. 244(1), pages 49-66, September.
    8. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.
    9. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    10. Marais, Karen B. & Saleh, Joseph H., 2009. "Beyond its cost, the value of maintenance: An analytical framework for capturing its net present value," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 644-657.
    11. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    12. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    13. Alan P. Wood, 1988. "Optimal maintenance policies for constantly monitored systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(4), pages 461-471, August.
    14. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    15. Panagiotidou, S. & Tagaras, G., 2012. "Optimal integrated process control and maintenance under general deterioration," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 58-70.
    16. Salvatore T. March & Gary D. Scudder, 2019. "Predictive maintenance: strategic use of IT in manufacturing organizations," Information Systems Frontiers, Springer, vol. 21(2), pages 327-341, April.
    17. Nguyen, Dinh Tuan & Dijoux, Yann & Fouladirad, Mitra, 2017. "Analytical properties of an imperfect repair model and application in preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 256(2), pages 439-453.
    18. Serguei Maximov & Consuelo de J. Cortes-Penagos, 2020. "A long-time asymptotic solution to the g-renewal equation for underlying distributions with nondecreasing hazard functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 311-341, October.
    19. Chaabane, K. & Khatab, A. & Diallo, C. & Aghezzaf, E.-H. & Venkatadri, U., 2020. "Integrated imperfect multimission selective maintenance and repairpersons assignment problem," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. Salvatore T. March & Gary D. Scudder, 0. "Predictive maintenance: strategic use of IT in manufacturing organizations," Information Systems Frontiers, Springer, vol. 0, pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:217:y:2014:i:1:p:1-29:10.1007/s10479-014-1543-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.