IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v39y1992i7p937-955.html
   My bibliography  Save this article

Optimal replacement rules based on different information levels

Author

Listed:
  • Gert Heinrich
  • Uwe Jensen

Abstract

We consider the following replacement model in reliability theory. A technical system with random lifetime is replaced upon failure. Preventive replacements can be carried out before failure. The time for such a replacement depends on the observation of a random state parameter and is therefore in general a random time. Different costs for preventive and failure replacements are introduced which may depend on the age of the working system. The optimization criterion followed here to find an optimal replacement time is to minimize the total expected discounted costs. The optimal replacement policy depends on the observation of the state of the system. Results of the theory of stochastic processes are used to obtain the optimal strategy for different information levels. Several examples based on a two‐component parallel system with possibly dependent component lifetimes show how the optimal replacement policy depends on the different information levels and on the degree of dependence of the components. © 1992 John Wiley & Sons, Inc.

Suggested Citation

  • Gert Heinrich & Uwe Jensen, 1992. "Optimal replacement rules based on different information levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(7), pages 937-955, December.
  • Handle: RePEc:wly:navres:v:39:y:1992:i:7:p:937-955
    DOI: 10.1002/1520-6750(199212)39:73.0.CO;2-C
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199212)39:73.0.CO;2-C
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199212)39:73.0.CO;2-C?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    2. William P. Pierskalla & John A. Voelker, 1976. "A survey of maintenance models: The control and surveillance of deteriorating systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 353-388, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le, Minh Duc & Tan, Cher Ming, 2013. "Optimal maintenance strategy of deteriorating system under imperfect maintenance and inspection using mixed inspectionscheduling," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 21-29.
    2. Barros, A. & Bérenguer, C. & Grall, A., 2005. "On the hazard rate process for imperfectly monitored multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 169-176.
    3. A Barros & A Grall & C Berenguer, 2007. "Joint modelling and optimization of monitoring and maintenance performance for a two-unit parallel system," Journal of Risk and Reliability, , vol. 221(1), pages 1-11, March.
    4. R Flage & T Aven, 2011. "Optimal periodic condition inspection and replacement policy for a binary monotone system using a counting process approach," Journal of Risk and Reliability, , vol. 225(2), pages 161-168, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry BANNIKOV & Nina SIRINA & Alexander SMOLYANINOV, 2018. "Model Of The Maintenance And Repair System In Service Maintenance Management," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(3), pages 5-14, September.
    2. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    3. Lisa M. Maillart & Xiang Fang, 2006. "Optimal maintenance policies for serial, multi‐machine systems with non‐instantaneous repairs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 804-813, December.
    4. Scott G. Frickenstein & Lyn R. Whitaker, 2003. "Age replacement policies in two time scales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(6), pages 592-613, September.
    5. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    6. Yeek-Hyun Kim & Lyn Thomas, 2013. "Training and repair policies for stand-by systems," Annals of Operations Research, Springer, vol. 208(1), pages 469-487, September.
    7. Xiaodong Yao & Xiaolan Xie & Michael C. Fu & Steven I. Marcus, 2005. "Optimal joint preventive maintenance and production policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 668-681, October.
    8. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    9. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    10. Retsef Levi & Thomas Magnanti & Yaron Shaposhnik, 2019. "Scheduling with Testing," Management Science, INFORMS, vol. 65(2), pages 776-793, February.
    11. Maria Chiara Magnanini & Tullio Tolio, 2020. "Switching- and hedging- point policy for preventive maintenance with degrading machines: application to a two-machine line," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 241-271, June.
    12. C. Teresa Lam & R. H. Yeh, 1994. "Optimal replacement policies for multistate deteriorating systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 303-315, April.
    13. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer, 2008. "Replacing nonidentical vital components to extend system life," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 700-703, October.
    14. Kut C. So, 1992. "Optimality of control limit policies in replacement models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 685-697, August.
    15. Schouten, Thijs Nicolaas & Dekker, Rommert & Hekimoğlu, Mustafa & Eruguz, Ayse Sena, 2022. "Maintenance optimization for a single wind turbine component under time-varying costs," European Journal of Operational Research, Elsevier, vol. 300(3), pages 979-991.
    16. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    17. Rommert Dekker & Eric Smeitink, 1994. "Preventive maintenance at opportunities of restricted duration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 335-353, April.
    18. V. Makis & X. Jiang & K. Cheng, 2000. "Optimal Preventive Replacement Under Minimal Repair and Random Repair Cost," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 141-156, February.
    19. Patrick H. Liu, 2000. "A comparative study of three tool replacement/operation sequencing strategies in a flexible manufacturing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(6), pages 479-499, September.
    20. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:39:y:1992:i:7:p:937-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.