IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v208y2013i1p469-48710.1007-s10479-012-1185-3.html
   My bibliography  Save this article

Training and repair policies for stand-by systems

Author

Listed:
  • Yeek-Hyun Kim
  • Lyn Thomas

Abstract

This research is concerned with developing repair and training strategies for stand-by equipment which maximise the time until the equipment is unable to respond when it is needed. Equipment can only be used if it is in an operable state and the users have had sufficient recent training on it. Thus it is necessary to decide when to maintain/repair the equipment and when to use the equipment for training. Both actions mean the equipment is not readily available for use in an emergency. We develop discrete time Markov decision process formulations of this problem in order to investigate the form of the optimal policies which maximise the expected survival time until a catastrophic event when an emergency occurs and the equipment cannot respond. We also calculate the solution in a number of numerical examples. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Yeek-Hyun Kim & Lyn Thomas, 2013. "Training and repair policies for stand-by systems," Annals of Operations Research, Springer, vol. 208(1), pages 469-487, September.
  • Handle: RePEc:spr:annopr:v:208:y:2013:i:1:p:469-487:10.1007/s10479-012-1185-3
    DOI: 10.1007/s10479-012-1185-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1185-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1185-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    2. Michael N. Katehakis & Cyrus Derman, 1984. "Optimal Repair Allocation in a Series System," Mathematics of Operations Research, INFORMS, vol. 9(4), pages 615-623, November.
    3. Y. S. Sherif & M. L. Smith, 1981. "Optimal maintenance models for systems subject to failure–A Review," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(1), pages 47-74, March.
    4. John J. McCall, 1965. "Maintenance Policies for Stochastically Failing Equipment: A Survey," Management Science, INFORMS, vol. 11(5), pages 493-524, March.
    5. C. Derman & G. J. Lieberman & S. M. Ross, 1984. "On the Use of Replacements to Extend System Life," Operations Research, INFORMS, vol. 32(3), pages 616-627, June.
    6. Y-H Kim & L C Thomas, 2006. "Repair strategies in an uncertain environment: Markov decision process approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 957-964, August.
    7. Çinlar, Erhan & Shaked, Moshe & Shanthikumar, J. George, 1989. "On lifetimes influenced by a common environment," Stochastic Processes and their Applications, Elsevier, vol. 33(2), pages 347-359, December.
    8. William P. Pierskalla & John A. Voelker, 1976. "A survey of maintenance models: The control and surveillance of deteriorating systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 353-388, September.
    9. C. Derman & J. Sacks, 1960. "Replacement of periodically inspected equipment. (An optimal optional stopping rule)," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 7(4), pages 597-607, December.
    10. George E. Monahan, 1982. "State of the Art---A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms," Management Science, INFORMS, vol. 28(1), pages 1-16, January.
    11. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer, 2008. "Replacing nonidentical vital components to extend system life," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 700-703, October.
    2. Lisa M. Maillart & Xiang Fang, 2006. "Optimal maintenance policies for serial, multi‐machine systems with non‐instantaneous repairs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 804-813, December.
    3. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    4. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    5. Retsef Levi & Thomas Magnanti & Yaron Shaposhnik, 2019. "Scheduling with Testing," Management Science, INFORMS, vol. 65(2), pages 776-793, February.
    6. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    7. Y-H Kim & L C Thomas, 2006. "Repair strategies in an uncertain environment: Markov decision process approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 957-964, August.
    8. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    9. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Kai He & Lisa M. Maillart & Oleg A. Prokopyev, 2019. "Optimal sequencing of heterogeneous, non-instantaneous interventions," Annals of Operations Research, Springer, vol. 276(1), pages 109-135, May.
    11. Kut C. So, 1992. "Optimality of control limit policies in replacement models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 685-697, August.
    12. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    13. Dmitry BANNIKOV & Nina SIRINA & Alexander SMOLYANINOV, 2018. "Model Of The Maintenance And Repair System In Service Maintenance Management," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(3), pages 5-14, September.
    14. Scott G. Frickenstein & Lyn R. Whitaker, 2003. "Age replacement policies in two time scales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(6), pages 592-613, September.
    15. Michael Katehakis & Ingram Olkin & Sheldon Ross & Jian Yang, 2013. "On the life and work of Cyrus Derman," Annals of Operations Research, Springer, vol. 208(1), pages 5-26, September.
    16. Xiaodong Yao & Xiaolan Xie & Michael C. Fu & Steven I. Marcus, 2005. "Optimal joint preventive maintenance and production policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 668-681, October.
    17. Wallace J. Hopp & Sung‐Chi Wu, 1988. "Multiaction maintenance under markovian deterioration and incomplete state information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 447-462, October.
    18. David L. Kaufman & Mark E. Lewis, 2007. "Machine maintenance with workload considerations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 750-766, October.
    19. C. Teresa Lam & R. H. Yeh, 1994. "Optimal replacement policies for multistate deteriorating systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 303-315, April.
    20. Schouten, Thijs Nicolaas & Dekker, Rommert & Hekimoğlu, Mustafa & Eruguz, Ayse Sena, 2022. "Maintenance optimization for a single wind turbine component under time-varying costs," European Journal of Operational Research, Elsevier, vol. 300(3), pages 979-991.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:208:y:2013:i:1:p:469-487:10.1007/s10479-012-1185-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.