IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v39y2019i5p600-611.html
   My bibliography  Save this article

Volatility of volatility is (also) rough

Author

Listed:
  • José Da Fonseca
  • Wenjun Zhang

Abstract

Using high‐frequency data for major volatility indexes, we compute the volatility of volatility and show that its logarithm follows a fractional Brownian motion with Hurst parameter smaller than 1/2 thereby extending to the volatility asset class the recent findings obtained for the equity index markets. The results confirm that the volatility of volatility is a rough process and it possesses the long memory property. We also show that the correlation between the volatility and the volatility of volatility is positive, consistent with observations in the volatility option market. Lastly, a robustness check using volatility futures confirms the findings.

Suggested Citation

  • José Da Fonseca & Wenjun Zhang, 2019. "Volatility of volatility is (also) rough," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(5), pages 600-611, May.
  • Handle: RePEc:wly:jfutmk:v:39:y:2019:i:5:p:600-611
    DOI: 10.1002/fut.21995
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.21995
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.21995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
    4. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    5. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    6. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Tomas & Mathieu Rosenbaum, 2019. "From microscopic price dynamics to multidimensional rough volatility models," Papers 1910.13338, arXiv.org, revised Oct 2019.
    2. Wu, Lingke & Liu, Dehong & Yuan, Jianglei & Huang, Zhenhuan, 2022. "Implied volatility information of Chinese SSE 50 ETF options," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 609-624.
    3. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    4. Grobys, Klaus, 2023. "Correlation versus co-fractality: Evidence from foreign-exchange-rate variances," International Review of Financial Analysis, Elsevier, vol. 86(C).
    5. Boyi Li & Weixuan Xia, 2024. "Crypto Inverse-Power Options and Fractional Stochastic Volatility," Papers 2403.16006, arXiv.org, revised Sep 2024.
    6. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    7. Yiru Xi & Hoi Ying Wong, 2021. "Discrete variance swap in a rough volatility economy," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1640-1654, October.
    8. Qi Zhao & Alexandra Chronopoulou, 2024. "A New Proxy for Estimating the Roughness of Volatility," JRFM, MDPI, vol. 17(4), pages 1-15, March.
    9. Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
    10. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    2. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    3. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    4. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    5. Martin Keller-Ressel & Martin Larsson & Sergio Pulido, 2018. "Affine Rough Models," Papers 1812.08486, arXiv.org.
    6. Qiang Liu & Yuhan Jiao & Shuxin Guo, 2022. "GARCH pricing and hedging of VIX options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(6), pages 1039-1066, June.
    7. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    8. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    9. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    10. Xiaoyu Tan & Chengxiang Wang & Wei Lin & Jin E. Zhang & Shenghong Li & Xuejun Zhao & Zili Zhang, 2021. "The term structure of the VXX option smirk: Pricing VXX option with a two‐factor model and asymmetry jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 439-457, April.
    11. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    12. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    13. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    14. Fei Gao & Shuaiqiang Liu & Cornelis W. Oosterlee & Nico M. Temme, 2022. "Solution of integrals with fractional Brownian motion for different Hurst indices," Papers 2203.02323, arXiv.org, revised Mar 2022.
    15. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    16. Qi Zhao & Alexandra Chronopoulou, 2023. "Delta-hedging in fractional volatility models," Annals of Finance, Springer, vol. 19(1), pages 119-140, March.
    17. Jan Matas & Jan Posp'iv{s}il, 2021. "Robustness and sensitivity analyses for rough Volterra stochastic volatility models," Papers 2107.12462, arXiv.org, revised Jun 2023.
    18. Saad Mouti, 2023. "Rough volatility: evidence from range volatility estimators," Papers 2312.01426, arXiv.org, revised Sep 2024.
    19. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    20. Fabio Baschetti & Giacomo Bormetti & Silvia Romagnoli & Pietro Rossi, 2020. "The SINC way: A fast and accurate approach to Fourier pricing," Papers 2009.00557, arXiv.org, revised May 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:39:y:2019:i:5:p:600-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.