IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i8p2292-2306.html
   My bibliography  Save this article

Time‐varying partial‐directed coherence approach to forecast global energy prices with stochastic volatility model

Author

Listed:
  • Zouhaier Dhifaoui
  • Sami Ben Jabeur
  • Rabeh Khalfaoui
  • Muhammad Ali Nasir

Abstract

For investors and policymakers, forecasting energy prices with accuracy is essential and plays a major role in the global bulk commodity markets. The current study proposes a novel hybrid forecasting model to predict global energy prices, namely, time‐varying partial‐directed coherence with stochastic volatility. The proposed method combines partial‐directed coherence analysis and stochastic volatility models. Accordingly, this study attempts to provide an in‐depth understanding of the relationship between energy markets and global economic conditions as well as the causality pathway between the underlined markets. Monthly data from January 1982 to July 2022 is used in this study. The results show a strong causality between global economic conditions, European oil, and natural gas prices and have profound implications for policymakers. For completeness, we extend the analysis to the forecasting ability of global economic conditions for oil and natural gas prices. The out‐of‐sample results show that the autoregressive model incorporating the global economic conditions index can significantly improve the accuracy of oil and gas price forecasts. In addition, our results are strongly robust over a variety of time horizons for forecasting, and they provide valuable insights into the forecasting choices to guide investment strategies in the energy and financial market.

Suggested Citation

  • Zouhaier Dhifaoui & Sami Ben Jabeur & Rabeh Khalfaoui & Muhammad Ali Nasir, 2023. "Time‐varying partial‐directed coherence approach to forecast global energy prices with stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2292-2306, December.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2292-2306
    DOI: 10.1002/for.3015
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3015
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023. "Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
    2. Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022. "Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model," Energy Economics, Elsevier, vol. 108(C).
    3. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    4. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    5. Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2017. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 275-295, March.
    6. Bakas, Dimitrios & Triantafyllou, Athanasios, 2020. "Commodity price volatility and the economic uncertainty of pandemics," Economics Letters, Elsevier, vol. 193(C).
    7. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. Choudhry, Taufiq & Papadimitriou, Fotios I. & Shabi, Sarosh, 2016. "Stock market volatility and business cycle: Evidence from linear and nonlinear causality tests," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 89-101.
    9. Lv, Wendai & Wu, Qian, 2022. "Global economic conditions index and oil price predictability," Finance Research Letters, Elsevier, vol. 48(C).
    10. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    11. Janet L Yellen, 2011. "Macroprudential Supervision and Monetary Policy in the Post-crisis World," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 46(1), pages 3-12, January.
    12. Wang, Jiqian & Ma, Feng & Bouri, Elie & Zhong, Juandan, 2022. "Volatility of clean energy and natural gas, uncertainty indices, and global economic conditions," Energy Economics, Elsevier, vol. 108(C).
    13. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    14. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    15. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    16. Daniel Yasumasa Takahashi & Luiz Antonio Baccal & Koichi Sameshima, 2007. "Connectivity Inference between Neural Structures via Partial Directed Coherence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(10), pages 1259-1273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lixia & Bai, Jiancheng & Zhang, Yueyan & Cui, Can, 2023. "Global economic uncertainty and the Chinese stock market: Assessing the impacts of global indicators," Research in International Business and Finance, Elsevier, vol. 65(C).
    2. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    4. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    5. Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
    6. Wang, Lu & Ruan, Hang & Lai, Xiaodong & Li, Dongxin, 2024. "Economic extremes steering renewable energy trajectories: A time-frequency dissection of global shocks," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    7. Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
    8. Chen, Juan & Xiao, Zuoping & Bai, Jiancheng & Guo, Hongling, 2023. "Predicting volatility in natural gas under a cloud of uncertainties," Resources Policy, Elsevier, vol. 82(C).
    9. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    10. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    11. Nima Nonejad, 2024. "Point forecasts of the price of crude oil: an attempt to “beat” the end-of-month random-walk benchmark," Empirical Economics, Springer, vol. 67(4), pages 1497-1539, October.
    12. Arabinda Basistha & Richard Startz, 2024. "Measuring persistent global economic factors with output, commodity price, and commodity currency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2860-2885, November.
    13. Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
    14. Hong, Yanran & Cao, Shijiao & Xu, Pengfei & Pan, Zhigang, 2024. "Interpreting the effect of global economic risks on crude oil market: A supply-demand perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    15. Wang, Jiqian & Ma, Feng & Bouri, Elie & Zhong, Juandan, 2022. "Volatility of clean energy and natural gas, uncertainty indices, and global economic conditions," Energy Economics, Elsevier, vol. 108(C).
    16. Li, Zepei & Huang, Haizhen, 2023. "Challenges for volatility forecasts of US fossil energy spot markets during the COVID-19 crisis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 31-45.
    17. Feng, Jiabao & Wang, Yudong & Yin, Libo, 2017. "Oil volatility risk and stock market volatility predictability: Evidence from G7 countries," Energy Economics, Elsevier, vol. 68(C), pages 240-254.
    18. Kliber, Agata & Łęt, Blanka & Řezáč, Pavel, 2024. "Can a boost in oil prices suspend the evolution of the green transportation market? Relationships between green indices and Brent oil," Energy, Elsevier, vol. 295(C).
    19. Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
    20. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2292-2306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.