IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i2p312-330.html
   My bibliography  Save this article

Text‐based soybean futures price forecasting: A two‐stage deep learning approach

Author

Listed:
  • Wuyue An
  • Lin Wang
  • Yu‐Rong Zeng

Abstract

This paper investigates the soybean futures price prediction problem from a new perspective and proposes an effective prediction model named Two‐Stage Hybrid Long Short‐Term Memory (TSH‐LSTM) by using text data from social media. First, the unstructured text is transformed into structured data by sentiment analysis and text classification methods. The improved sentiment score is computed by combining the degree centrality of sentiment words based on the sentiment dictionary method, and the characteristics of price fluctuations in texts are learned through the text Recurrent Convolutional Neural Networks. Second, the significant relationship between social media features and soybean futures price is assessed through stepwise regression, and the results of such an assessment are used as a basis for the identification of significant factors as input variables of the prediction model. Finally, the TSH‐LSTM prediction model is designed, and the final prediction result is acquired through the combination of prediction results of each stage using the error reciprocal method. The empirical results indicate that the incorporation of the social media text feature helps improve forecasting performances. Specifically, the proposed TSH‐LSTM is more accurate than univariate LSTM, multivariate LSTM, and eXtreme Gradient Boosting.

Suggested Citation

  • Wuyue An & Lin Wang & Yu‐Rong Zeng, 2023. "Text‐based soybean futures price forecasting: A two‐stage deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 312-330, March.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:2:p:312-330
    DOI: 10.1002/for.2909
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2909
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
    2. Manuel A. Hernandez & Raul Ibarra & Danilo R. Trupkin, 2014. "How far do shocks move across borders? Examining volatility transmission in major agricultural futures markets," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 301-325.
    3. Ahumada, H. & Cornejo, M., 2016. "Forecasting food prices: The case of corn, soybeans and wheat," International Journal of Forecasting, Elsevier, vol. 32(3), pages 838-848.
    4. Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
    5. Papailias, Fotis & Thomakos, Dimitrios, 2017. "EXSSA: SSA-based reconstruction of time series via exponential smoothing of covariance eigenvalues," International Journal of Forecasting, Elsevier, vol. 33(1), pages 214-229.
    6. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    8. Bakas, Dimitrios & Triantafyllou, Athanasios, 2019. "Volatility forecasting in commodity markets using macro uncertainty," Energy Economics, Elsevier, vol. 81(C), pages 79-94.
    9. Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
    10. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    11. Yeong Hyeon Gu & Dong Jin & Helin Yin & Ri Zheng & Xianghua Piao & Seong Joon Yoo, 2022. "Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
    12. Tserenpurev Chuluunsaikhan & Ga-Ae Ryu & Kwan-Hee Yoo & HyungChul Rah & Aziz Nasridinov, 2020. "Incorporating Deep Learning and News Topic Modeling for Forecasting Pork Prices: The Case of South Korea," Agriculture, MDPI, vol. 10(11), pages 1-22, October.
    13. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    14. Philipp Adämmer & Martin T. Bohl, 2018. "Price discovery dynamics in European agricultural markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 549-562, May.
    15. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Drinkall & Janet B. Pierrehumbert & Stefan Zohren, 2024. "Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings," Papers 2407.17624, arXiv.org.
    2. Huang, Wenyang & Gao, Tianxiao & Hao, Yun & Wang, Xiuqing, 2023. "Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices," Energy Economics, Elsevier, vol. 127(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
    2. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    3. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    4. Hedi Ben Haddad & Imed Mezghani & Abdessalem Gouider, 2021. "The Dynamic Spillover Effects of Macroeconomic and Financial Uncertainty on Commodity Markets Uncertainties," Economies, MDPI, vol. 9(2), pages 1-22, June.
    5. Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
    6. Zhuo Chen & Bo Yan & Hanwen Kang, 2023. "Price bubbles of agricultural commodities: evidence from China’s futures market," Empirical Economics, Springer, vol. 64(1), pages 195-222, January.
    7. Amir Abdul Majid, 2022. "Forecasting Monthly Wind Energy Using an Alternative Machine Training Method with Curve Fitting and Temporal Error Extraction Algorithm," Energies, MDPI, vol. 15(22), pages 1-24, November.
    8. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    9. Xing, Zhuoqun & Pan, Yiqun & Yang, Yiting & Yuan, Xiaolei & Liang, Yumin & Huang, Zhizhong, 2024. "Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction," Applied Energy, Elsevier, vol. 365(C).
    10. Xu Zhang & Xian Yang & Jianping Li & Jun Hao, 2023. "Contemporaneous and noncontemporaneous idiosyncratic risk spillovers in commodity futures markets: A novel network topology approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 705-733, June.
    11. Xiaohong Yu & Bin Liu & Yongzeng Lai, 2024. "Monthly Pork Price Prediction Applying Projection Pursuit Regression: Modeling, Empirical Research, Comparison, and Sustainability Implications," Sustainability, MDPI, vol. 16(4), pages 1-26, February.
    12. Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Ousama Ben-Salha & Lamia Ben Amor, 2022. "Does Uncertainty Forecast Crude Oil Volatility before and during the COVID-19 Outbreak? Fresh Evidence Using Machine Learning Models," Energies, MDPI, vol. 15(15), pages 1-20, August.
    13. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    14. Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
    15. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    16. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    17. Čermák, Michal & Ligocká, Marie, 2022. "Could Exist a Causality Between the Most Traded Commodities and Futures Commodity Prices in the Agricultural Market?," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(4), December.
    18. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    19. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    20. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova & Michael Obersteiner, 2024. "Regime‐dependent commodity price dynamics: A predictive analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2822-2847, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:2:p:312-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.