IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v39y2024i7p1321-1331.html
   My bibliography  Save this article

The benefits of forecasting inflation with machine learning: New evidence

Author

Listed:
  • Andrea A. Naghi
  • Eoghan O'Neill
  • Martina Danielova Zaharieva

Abstract

Medeiros et al. (2021) (Journal of Business & Economic Statistics, 39:1, 98–119) find that random forest (RF) outperforms US inflation forecasting benchmarks. We replicate the main results in Medeiros et al. (2021) and (1) considerably expand the set of machine learning methods, (2) analyse the predictive ability of both the initial and extended sets of methods on Canadian and UK data, (3) add results on coverage rates and widths of prediction intervals and (4) extend the sample from January 2016 to October 2022. Our narrow replication confirms the main findings of the original paper. However, the wider replication results suggest that other methods are competitive with RF and often more accurate. In addition, RF produces disappointing results during the coronavirus pandemic and subsequent high inflation of 2020–2022, whereas a stochastic volatility model and some gradient boosting methods produce more accurate forecasts.

Suggested Citation

  • Andrea A. Naghi & Eoghan O'Neill & Martina Danielova Zaharieva, 2024. "The benefits of forecasting inflation with machine learning: New evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1321-1331, November.
  • Handle: RePEc:wly:japmet:v:39:y:2024:i:7:p:1321-1331
    DOI: 10.1002/jae.3088
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.3088
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.3088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
    2. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    3. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    4. Buckmann, Marcus & Joseph, Andreas, 2022. "An interpretable machine learning workflow with an application to economic forecasting," Bank of England working papers 984, Bank of England.
    5. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    6. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    7. Christoph Behrens & Christian Pierdzioch & Marian Risse, 2020. "Do German economic research institutes publish efficient growth and inflation forecasts? A Bayesian analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(4), pages 698-723, March.
    8. Antonio R. Linero & Yun Yang, 2018. "Bayesian regression tree ensembles that adapt to smoothness and sparsity," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 1087-1110, November.
    9. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faria, Gonçalo & Verona, Fabio, 2024. "Enhancing forecast accuracy through frequencydomain combination: Applications to financial and economic indicators," Bank of Finland Research Discussion Papers 14/2024, Bank of Finland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    2. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    3. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    4. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    5. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    6. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    7. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    8. Jiazi Chen & Zhiwu Hong & Linlin Niu, 2022. "Forecasting Interest Rates with Shifting Endpoints: The Role of the Demographic Age Structure," Working Papers 2022-06-25, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    9. Hillebrand, Eric & Lukas, Manuel & Wei, Wei, 2021. "Bagging weak predictors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 237-254.
    10. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    11. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
    12. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    13. Ergemen, Yunus Emre, 2022. "Forecasting inflation rates with multi-level international dependence," Economics Letters, Elsevier, vol. 214(C).
    14. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    15. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    16. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    17. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    18. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
    19. Gabriel Rodriguez-Rondon, 2024. "Underlying Core Inflation with Multiple Regimes," Papers 2411.12845, arXiv.org.
    20. Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:39:y:2024:i:7:p:1321-1331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.