Bayesian regression tree ensembles that adapt to smoothness and sparsity
Author
Abstract
Suggested Citation
DOI: 10.1111/rssb.12293
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oyebayo Ridwan Olaniran & Ali Rashash R. Alzahrani, 2023. "On the Oracle Properties of Bayesian Random Forest for Sparse High-Dimensional Gaussian Regression," Mathematics, MDPI, vol. 11(24), pages 1-29, December.
- Tsionas, Mike, 2022. "Efficiency estimation using probabilistic regression trees with an application to Chilean manufacturing industries," International Journal of Production Economics, Elsevier, vol. 249(C).
- Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
- Falco J. Bargagli-Stoffi & Fabio Incerti & Massimo Riccaboni & Armando Rungi, 2023. "Machine Learning for Zombie Hunting: Predicting Distress from Firms' Accounts and Missing Values," Papers 2306.08165, arXiv.org.
- Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
- Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
- Jaouad Mourtada & Stéphane Gaïffas & Erwan Scornet, 2021. "AMF: Aggregated Mondrian forests for online learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 505-533, July.
- Piyali Basak & Antonio Linero & Debajyoti Sinha & Stuart Lipsitz, 2022. "Semiparametric analysis of clustered interval‐censored survival data using soft Bayesian additive regression trees (SBART)," Biometrics, The International Biometric Society, vol. 78(3), pages 880-893, September.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
- Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
- Eoghan O'Neill, 2022. "Type I Tobit Bayesian Additive Regression Trees for Censored Outcome Regression," Papers 2211.07506, arXiv.org, revised Feb 2024.
- Lamprinakou, Stamatina & Barahona, Mauricio & Flaxman, Seth & Filippi, Sarah & Gandy, Axel & McCoy, Emma J., 2023. "BART-based inference for Poisson processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Yakun Wang & Zeda Li & Scott A. Bruce, 2023. "Adaptive Bayesian sum of trees model for covariate‐dependent spectral analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1826-1839, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:5:p:1087-1110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.