IDEAS home Printed from https://ideas.repec.org/a/sae/globus/v25y2024i5p1290-1313.html
   My bibliography  Save this article

Data Mining-based Financial Statement Fraud Detection: Systematic Literature Review and Meta-analysis to Estimate Data Sample Mapping of Fraudulent Companies Against Non-fraudulent Companies

Author

Listed:
  • Sonika Gupta
  • Sushil Kumar Mehta

Abstract

Data mining techniques have proven quite effective not only in detecting financial statement frauds but also in discovering other financial crimes, such as credit card frauds, loan and security frauds, corporate frauds, bank and insurance frauds, etc. Classification of data mining techniques, in recent years, has been accepted as one of the most credible methodologies for the detection of symptoms of financial statement frauds through scanning the published financial statements of companies. The retrieved literature that has used data mining classification techniques can be broadly categorized on the basis of the type of technique applied, as statistical techniques and machine learning techniques. The biggest challenge in executing the classification process using data mining techniques lies in collecting the data sample of fraudulent companies and mapping the sample of fraudulent companies against non-fraudulent companies. In this article, a systematic literature review (SLR) of studies from the area of financial statement fraud detection has been conducted. The review has considered research articles published between 1995 and 2020. Further, a meta-analysis has been performed to establish the effect of data sample mapping of fraudulent companies against non-fraudulent companies on the classification methods through comparing the overall classification accuracy reported in the literature. The retrieved literature indicates that a fraudulent sample can either be equally paired with non-fraudulent sample (1:1 data mapping) or be unequally mapped using 1:many ratio to increase the sample size proportionally. Based on the meta-analysis of the research articles, it can be concluded that machine learning approaches, in comparison to statistical approaches, can achieve better classification accuracy, particularly when the availability of sample data is low. High classification accuracy can be obtained with even a 1:1 mapping data set using machine learning classification approaches.

Suggested Citation

  • Sonika Gupta & Sushil Kumar Mehta, 2024. "Data Mining-based Financial Statement Fraud Detection: Systematic Literature Review and Meta-analysis to Estimate Data Sample Mapping of Fraudulent Companies Against Non-fraudulent Companies," Global Business Review, International Management Institute, vol. 25(5), pages 1290-1313, October.
  • Handle: RePEc:sae:globus:v:25:y:2024:i:5:p:1290-1313
    DOI: 10.1177/0972150920984857
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0972150920984857
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0972150920984857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:globus:v:25:y:2024:i:5:p:1290-1313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.imi.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.