A neural‐network‐based decision‐making model in the peer‐to‐peer lending market
Author
Abstract
Suggested Citation
DOI: 10.1002/isaf.1480
Download full text from publisher
References listed on IDEAS
- Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
- Mild, Andreas & Waitz, Martin & Wöckl, Jürgen, 2015. "How low can you go? — Overcoming the inability of lenders to set proper interest rates on unsecured peer-to-peer lending markets," Journal of Business Research, Elsevier, vol. 68(6), pages 1291-1305.
- Karellas, Sotirios & Boukis, Ioannis & Kontopoulos, Georgios, 2010. "Development of an investment decision tool for biogas production from agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1273-1282, May.
- Carlo Magni, 2013.
"The Internal Rate of Return Approach and the AIRR Paradigm: A Refutation and a Corroboration,"
The Engineering Economist, Taylor & Francis Journals, vol. 58(2), pages 73-111.
- Carlo Alberto Magni, 2012. "The Internal-Rate-of-Return approach and the AIRR paradigm: A refutation and a corroboration," Proyecciones Financieras y Valoración 10084, Master Consultores.
- Riza Emekter & Yanbin Tu & Benjamas Jirasakuldech & Min Lu, 2015. "Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending," Applied Economics, Taylor & Francis Journals, vol. 47(1), pages 54-70, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
- Liu, He & Qiao, Han & Wang, Shouyang & Li, Yuze, 2019. "Platform Competition in Peer-to-Peer Lending Considering Risk Control Ability," European Journal of Operational Research, Elsevier, vol. 274(1), pages 280-290.
- Chen, Rongda & Chen, Yikai & Jin, Chenglu & Xu, Guorui & Bao, Weiwei & Guo, Kenan, 2021. "Characteristics and mechanisms of not-fully marketized interest rates: Evidence from Chinese online lending," Research in International Business and Finance, Elsevier, vol. 55(C).
- Gao, Guang-Xin & Fan, Zhi-Ping & Fang, Xin & Lim, Yun Fong, 2018. "Optimal Stackelberg strategies for financing a supply chain through online peer-to-peer lending," European Journal of Operational Research, Elsevier, vol. 267(2), pages 585-597.
- Yeh, Jen-Yin & Chiu, Hsin-Yu & Huang, Jhih-Huei, 2024. "Predicting failure of P2P lending platforms through machine learning: The case in China," Finance Research Letters, Elsevier, vol. 59(C).
- Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
- Xi Yang & Wenjuan Fan & Shanlin Yang, 2020. "Identifying the Influencing Factors on Investors’ Investment Behavior: An Empirical Study Focusing on the Chinese P2P Lending Market," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
- Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
- Ligang Zhou & Chao Ma, 2023. "A Comparison of Different Rules on Loans Evaluation in Peer-to-Peer Lending by Gradient Boosting Models Under Moving Windows with Two Timestamps," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1481-1504, December.
- Yufei Xia & Lingyun He & Yinguo Li & Nana Liu & Yanlin Ding, 2020. "Predicting loan default in peer‐to‐peer lending using narrative data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 260-280, March.
- Qizhi Tao & Yizhe Dong & Ziming Lin, 2017. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 19(3), pages 425-441, June.
- Gaigalienė Asta & Česnys Dovydas, 2018. "Determinants of Default in Lithuanian Peer-To-Peer Platforms," Management of Organizations: Systematic Research, Sciendo, vol. 80(1), pages 19-36, December.
- Mousumi Munmun & Dongli Zhang & Charles C. Luo, 2024. "Peer-to-Peer Lending Performance Improvement: Learn from Lean Principles," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(1), pages 101-101, February.
- Ajay Byanjankar & József Mezei & Markku Heikkilä, 2021. "Data‐driven optimization of peer‐to‐peer lending portfolios based on the expected value framework," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 119-129, April.
- Chen, Pei-Fen & Lo, Shihmin & Tang, Hai-Yuan, 2022. "What if borrowers stop paying their loans? Investors’ rates of return on a peer-to-peer lending platform," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 359-377.
- Hyunwoo Woo & So Young Sohn, 2022. "A credit scoring model based on the Myers–Briggs type indicator in online peer-to-peer lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
- Qizhi Tao & Yizhe Dong & Ziming Lin, 0. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Sha, Yezhou, 2022. "Rating manipulation and creditworthiness for platform economy: Evidence from peer-to-peer lending," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
- Pang, Professor Sulin & Hou, Xianyan & Xia, Lianhu, 2021. "Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:27:y:2020:i:3:p:142-150. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.