IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i4p1273-1282.html
   My bibliography  Save this article

Development of an investment decision tool for biogas production from agricultural waste

Author

Listed:
  • Karellas, Sotirios
  • Boukis, Ioannis
  • Kontopoulos, Georgios

Abstract

Anaerobic digestion is a very promising solution for the treatment of agricultural waste, preventing pollution and leading to efficient energy production. Since this technology is available to each farmer in a different way depending on the location and the scattering of the primary sources, it is essential to clarify the best conditions adapted to local situations to treat the targeted residues and make this information accessible to farmers. In particular the possibility of codigestion seems to be very attractive for farmers who will be able to treat their own waste together with other organic substrates. Their profit in this case is double since they treat properly their own residues, taking advantage of the selling of heat and electricity as well as the utilisation of a stabilised biofertiliser. The aim of this paper is to present an investment decision kit for economic evaluation of biogas plant projects based on agricultural feedstocks.

Suggested Citation

  • Karellas, Sotirios & Boukis, Ioannis & Kontopoulos, Georgios, 2010. "Development of an investment decision tool for biogas production from agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1273-1282, May.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:4:p:1273-1282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00282-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno, Joan Carles & Ortega-López, Víctor & Coronas, Alberto, 2009. "Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant," Applied Energy, Elsevier, vol. 86(6), pages 837-847, June.
    2. Akinbami, J. -F. K. & Ilori, M. O. & Oyebisi, T. O. & Akinwumi, I. O. & Adeoti, O., 2001. "Biogas energy use in Nigeria: current status, future prospects and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 97-112, March.
    3. Singh, S.P. & Prerna, Pandey, 2009. "Review of recent advances in anaerobic packed-bed biogas reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1569-1575, August.
    4. Raven, R.P.J.M. & Gregersen, K.H., 2007. "Biogas plants in Denmark: successes and setbacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 116-132, January.
    5. Jingura, Raphael M. & Matengaifa, Rutendo, 2009. "Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1116-1120, June.
    6. Madlener, Reinhard & Antunes, Carlos Henggeler & Dias, Luis C., 2009. "Assessing the performance of biogas plants with multi-criteria and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1084-1094, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    2. Coimbra-Araújo, Carlos H. & Mariane, Leidiane & Júnior, Cicero Bley & Frigo, Elisandro Pires & Frigo, Michelle Sato & Araújo, Izabela Regina Costa & Alves, Helton José, 2014. "Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 826-839.
    3. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    4. Parisa Kazemiani-Najafabadi & Ehsan Amiri Rad, 2020. "Optimizing the bio/natural gas ratio in a dual-fuel gas turbine (DFGT) through energy-economic, environmental, and renewability analyses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5371-5386, August.
    5. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    6. Rácz, Viktor J. & Vestergaard, Niels, 2016. "Productivity and efficiency measurement of the Danish centralized biogas power sector," Renewable Energy, Elsevier, vol. 92(C), pages 397-404.
    7. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    8. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    9. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    10. Chen, Yu & Hu, Wei & Sweeney, Sandra, 2013. "Resource availability for household biogas production in rural China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 655-659.
    11. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    12. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    13. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    14. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    15. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    16. Jekayinfa, S.O. & Bamgboye, A.I., 2008. "Energy use analysis of selected palm-kernel oil mills in south western Nigeria," Energy, Elsevier, vol. 33(1), pages 81-90.
    17. Mohammadpour, Mohammadreza & Houshfar, Ehsan & Ashjaee, Mehdi & Mohammadpour, Amirreza, 2021. "Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO2 recirculation for oxy-fuel combustion power generation," Energy, Elsevier, vol. 220(C).
    18. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    19. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    20. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:4:p:1273-1282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.