IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v26y2019i2p71-82.html
   My bibliography  Save this article

Predicting SME loan delinquencies during recession using accounting data and SME characteristics: The case of Greece

Author

Listed:
  • Vasilios Giannopoulos
  • Eleftherios Aggelopoulos

Abstract

The objective of this paper is the comparison of various credit‐scoring models (i.e. binomial logistic regression, decision tree, multilayer perceptron neural network, radial basis function, and support vector machine) in evaluating the risk of small and micro enterprises' (SMEs') loan delinquencies based on accounting data and applicants' specific attributes. Exploiting a representative large data set of SMEs' loans granted by a large Greek commercial bank in the expansion period, we track the evolution of SMEs' delinquencies over the recession period August 2010 to July 2012. This time frame encompasses a period of manageable levels of delays (early recession period: August 2011–July 2012) and a period when delays were increased to a very high degree (deep recession period: August 2011–July 2012). Comparison of the employed credit‐scoring models during the early recession period shows that the multilayer perceptron neural network produces the highest predicting capacity, followed by the support vector machine model. As the crisis deepens, the support vector machine model presents the highest predicting accuracy, followed by the decision tree and then the multilayer perceptron model. Generally, the predictive performance of all credit‐scoring models seems to be substantially reduced as the recession escalates. Our paper has important implications for the proper financing of SMEs given their importance for the European economy.

Suggested Citation

  • Vasilios Giannopoulos & Eleftherios Aggelopoulos, 2019. "Predicting SME loan delinquencies during recession using accounting data and SME characteristics: The case of Greece," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(2), pages 71-82, April.
  • Handle: RePEc:wly:isacfm:v:26:y:2019:i:2:p:71-82
    DOI: 10.1002/isaf.1456
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1456
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Balios & N. Daskalakis & N. Eriotis & D. Vasiliou, 2016. "SMEs capital structure determinants during severe economic crisis: The case of Greece," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1145535-114, December.
    2. Louzis, Dimitrios P. & Vouldis, Angelos T. & Metaxas, Vasilios L., 2012. "Macroeconomic and bank-specific determinants of non-performing loans in Greece: A comparative study of mortgage, business and consumer loan portfolios," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1012-1027.
    3. Kosmidou, Kyriaki V. & Kousenidis, Dimitrios V. & Negakis, Christos I., 2015. "The impact of the EU/ECB/IMF bailout programs on the financial and real sectors of the ASE during the Greek sovereign crisis," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 440-454.
    4. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    5. Kasper Roszbach, 2004. "Bank Lending Policy, Credit Scoring, and the Survival of Loans," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 946-958, November.
    6. Eleftherios Angelopoulos & Antonios Georgopoulos, 2015. "The Determinants of Shareholder Value in Retail Banking During Crisis Years: The Case of Greece," Multinational Finance Journal, Multinational Finance Journal, vol. 19(2), pages 109-147, June.
    7. Jan-Henning Trustorff & Paul Konrad & Jens Leker, 2011. "Credit risk prediction using support vector machines," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 565-581, May.
    8. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    9. Wu, Chunchi & Wang, Xu-Ming, 2000. "A Neural Network Approach for Analyzing Small Business Lending Decisions," Review of Quantitative Finance and Accounting, Springer, vol. 15(3), pages 259-276, November.
    10. Nikolaos Artavanis & Adair Morse & Margarita Tsoutsoura, 2016. "Measuring Income Tax Evasion Using Bank Credit: Evidence from Greece," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 739-798.
    11. Kim, Hyeongjun & Cho, Hoon & Ryu, Doojin, 2018. "An empirical study on credit card loan delinquency," Economic Systems, Elsevier, vol. 42(3), pages 437-449.
    12. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    13. Stiglitz, Joseph E & Weiss, Andrew, 1981. "Credit Rationing in Markets with Imperfect Information," American Economic Review, American Economic Association, vol. 71(3), pages 393-410, June.
    14. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suarez, Javier & Sánchez Serrano, Antonio, 2018. "Approaching non-performing loans from a macroprudential angle," Report of the Advisory Scientific Committee 7, European Systemic Risk Board.
    2. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    3. Georges Dionne, 2003. "The Foundationsof Banks' Risk Regulation: A Review of Literature," THEMA Working Papers 2003-46, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    4. Roman Bohdan & Elizabeth Tipton & Dean Kiefer & Arsen Djatej, 2014. "The Case of Minority Small Business Owners: Empirical Evidence of Problems in Loan Financing," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 3(3), pages 01-13, July.
    5. Brei, Michael & Jacolin, Luc & Noah, Alphonse, 2020. "Credit risk and bank competition in Sub-Saharan Africa," Emerging Markets Review, Elsevier, vol. 44(C).
    6. Sascha Tobias Wengerek & Benjamin Hippert & André Uhde, 2019. "Risk allocation through securitization - Evidence from non-performing loans," Working Papers Dissertations 58, Paderborn University, Faculty of Business Administration and Economics.
    7. Abdelaziz Hakimi & Rim Boussaada & Majdi Karmani, 2022. "Is the relationship between corruption, government stability and non‐performing loans non‐linear? A threshold analysis for the MENA region," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4383-4398, October.
    8. Hamadi Matoussi & Aida Abdelmoula, 2008. "Using A Neural Network-Based Methodology for Credit–Risk Evaluation of A Tunisian Bank," Working Papers 408, Economic Research Forum, revised 06 Jan 2008.
    9. Galema, Rients, 2020. "Credit rationing in P2P lending to SMEs: Do lender-borrower relationships matter?," Journal of Corporate Finance, Elsevier, vol. 65(C).
    10. Andreas Dietrich & Reto Rey, 2020. "What Matters to Individual Investors: Price Setting in Online Auctions of P2P Consumer Loans," Papers 2003.11347, arXiv.org, revised Dec 2022.
    11. Elisa Ughetto & Andrea Vezzulli, 2011. "What role can mutual guarantee consortia play for financing innovation? A firm-level study for Italy," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 3(4), pages 294-319.
    12. Claudio Borio & Craig Furfine & Philip Lowe, 2001. "Procyclicality of the financial system and financial stability: issues and policy options," BIS Papers chapters, in: Bank for International Settlements (ed.), Marrying the macro- and micro-prudential dimensions of financial stability, volume 1, pages 1-57, Bank for International Settlements.
    13. Fernando A. F. Ferreira & Ieva Meidutė-Kavaliauskienė & Edmundas K. Zavadskas & Marjan S. Jalali & Sandra M. J. Catarino, 2019. "A Judgment-Based Risk Assessment Framework for Consumer Loans," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 7-33, January.
    14. Lobna Abid & Afif Masmoudi & Sonia Zouari-Ghorbel, 2018. "The Consumer Loan’s Payment Default Predictive Model: an Application of the Logistic Regression and the Discriminant Analysis in a Tunisian Commercial Bank," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 948-962, September.
    15. Haithem Awijen & Younes Ben Zaied & Ahmed Imran Hunjra, 2023. "Systematic and Unsystematic Determinants of Sectoral Risk Default Interconnectedness," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 561-587, August.
    16. G. Baourakis & M. Conisescu & G. Dijk & P. Pardalos & C. Zopounidis, 2009. "A multicriteria approach for rating the credit risk of financial institutions," Computational Management Science, Springer, vol. 6(3), pages 347-356, August.
    17. Sumit Agarwal & Brent W. Ambrose & Souphala Chomsisengphet & Chunlin Liu, 2011. "The Role of Soft Information in a Dynamic Contract Setting: Evidence from the Home Equity Credit Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(4), pages 633-655, June.
    18. Lei Lu & Jianxing Wei & Weixing Wu & Yi Zhou, 2023. "Pricing strategies in BigTech lending: Evidence from China," Financial Management, Financial Management Association International, vol. 52(2), pages 333-374, June.
    19. Jessica Holmes & Jonathan Isham & Jessica Wasilewski, 2005. "Overcoming Information Asymmetries in Low‐Income Lending: Lessons from the “Working Wheels” Program," Southern Economic Journal, John Wiley & Sons, vol. 72(2), pages 329-351, October.
    20. Jacobson, Tor & Roszbach, Kasper, 2003. "Bank lending policy, credit scoring and value-at-risk," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 615-633, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:26:y:2019:i:2:p:71-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.