A two‐step system for direct bank telemarketing outcome classification
Author
Abstract
Suggested Citation
DOI: 10.1002/isaf.1403
Download full text from publisher
References listed on IDEAS
- Silvia Figini & Roberto Savona & Marika Vezzoli, 2016. "Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 6-20, January.
- Jie Sun, 2012. "Integration Of Random Sample Selection, Support Vector Machines And Ensembles For Financial Risk Forecasting With An Empirical Analysis On The Necessity Of Feature Selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 229-246, October.
- Sergio Davalos & Fei Leng & Ehsan H. Feroz & Zhiyan Cao, 2014. "Designing An If–Then Rules‐Based Ensemble Of Heterogeneous Bankruptcy Classifiers: A Genetic Algorithm Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(3), pages 129-153, July.
- Roberto Savona & Marika Vezzoli, 2015.
"Fitting and Forecasting Sovereign Defaults using Multiple Risk Signals,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 66-92, February.
- Roberto Savona & Marika Vezzoli, 2012. "Fitting and Forecasting Sovereign Defaults Using Multiple Risk Signals," Working Papers 2012_26, Department of Economics, University of Venice "Ca' Foscari".
- Roberto Savona & Marika Vezzoli, 2012. "Multidimensional Distance‐To‐Collapse Point And Sovereign Default Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 205-228, October.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- George Albanis & Roy Batchelor, 2007. "Combining heterogeneous classifiers for stock selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(1‐2), pages 1-21, January.
- Maurice Peat & Stewart Jones, 2012. "Using Neural Nets To Combine Information Sets In Corporate Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 90-101, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Salim Lahmiri, 2016. "Features selection, data mining and finacial risk classification: a comparative study," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(4), pages 265-275, October.
- Salim Lahmiri & Stelios Bekiros & Anastasia Giakoumelou & Frank Bezzina, 2020. "Performance assessment of ensemble learning systems in financial data classification," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 3-9, January.
- Mark Joy & Marek Rusnák & Kateřina Šmídková & Bořek Vašíček, 2017.
"Banking and Currency Crises: Differential Diagnostics for Developed Countries,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 44-67, January.
- Mark Joy & Marek Rusnak & Katerina Smidkova & Borek Vasicek, 2014. "Banking and Currency Crises: Differential Diagnostics for Developed Countries," Working Papers 2014/16, Czech National Bank.
- Šmídková, Kateřina & Joy, Mark & Rusnák, Marek & Vašíček, Bořek, 2015. "Banking and currency crises: differential diagnostics for developed countries," Working Paper Series 1810, European Central Bank.
- Carmine Gabriele, 2019. "Learning from trees: A mixed approach to building early warning systems for systemic banking crises," Working Papers 40, European Stability Mechanism.
- Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Daniel Buncic, 2012.
"Understanding forecast failure of ESTAR models of real exchange rates,"
Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
- Daniel Buncic, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," EERI Research Paper Series EERI_RP_2009_18, Economics and Econometrics Research Institute (EERI), Brussels.
- Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
- Buncic, Daniel, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," MPRA Paper 16526, University Library of Munich, Germany.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
- Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011.
"Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
- Arazmuradov, Annageldy, 2016. "Assessing sovereign debt default by efficiency," The Journal of Economic Asymmetries, Elsevier, vol. 13(C), pages 100-113.
- Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
- Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
- Oscar Claveria & Salvador Torra, 2013.
"“Forecasting Business surveys indicators: neural networks vs. time series models”,"
AQR Working Papers
201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
- Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," IREA Working Papers 201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:24:y:2017:i:1:p:49-55. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.