IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v19y2012i4p229-246.html
   My bibliography  Save this article

Integration Of Random Sample Selection, Support Vector Machines And Ensembles For Financial Risk Forecasting With An Empirical Analysis On The Necessity Of Feature Selection

Author

Listed:
  • Jie Sun

Abstract

Financial risk forecasting (FRF) is an effective tool to help people forecast whether or not a company will fail in future. Among all techniques of FRF, the support vector machine (SVM) is the most newly developed, and one of the most accurate and effective techniques. This study is devoted to investigating an ensemble model of FRF by integrating bagging with an SVM to generate a data‐driven SVM ensemble. Bagging is used to produce diverse training datasets on which multiple SVM classifiers are trained to make FRF for a target company. Simple voting is employed to produce a final decision from the SVM model committee. The empirical study has two objectives. One is to verify whether the data‐driven SVM ensemble can produce a more dominating performance than the most frequently used techniques in the area of FRF, i.e. multivariate discriminant analysis, logistics regression and a single SVM. The other is to verify whether feature selection is necessary to help the SVM make more precise FRF, although the SVM can handle high‐dimensional data. The results indicate that the data‐driven SVM ensemble significantly improves the predictive ability of SVM‐based FRF. Meanwhile, feature selection can effectively help the SVM achieve better predictive performance, which means that use of feature selection is necessary in SVM‐based FRF. Copyright © 2012 John Wiley & Sons, Ltd.

Suggested Citation

  • Jie Sun, 2012. "Integration Of Random Sample Selection, Support Vector Machines And Ensembles For Financial Risk Forecasting With An Empirical Analysis On The Necessity Of Feature Selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 229-246, October.
  • Handle: RePEc:wly:isacfm:v:19:y:2012:i:4:p:229-246
    DOI: 10.1002/isaf.1331
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1331
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McKee, Thomas E. & Lensberg, Terje, 2002. "Genetic programming and rough sets: A hybrid approach to bankruptcy classification," European Journal of Operational Research, Elsevier, vol. 138(2), pages 436-451, April.
    2. Hui Li & Jie Sun, 2010. "Forecasting business failure in China using case-based reasoning with hybrid case respresentation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 486-501.
    3. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    4. Constantin Zopounidis & Michael Doumpos, 1999. "Business failure prediction using the UTADIS multicriteria analysis method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1138-1148, November.
    5. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    6. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    7. Cielen, Anja & Peeters, Ludo & Vanhoof, Koen, 2004. "Bankruptcy prediction using a data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 526-532, April.
    8. Jones, Stewart & Hensher, David A., 2007. "Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes," The British Accounting Review, Elsevier, vol. 39(1), pages 89-107.
    9. Premachandra, I.M. & Chen, Yao & Watson, John, 2011. "DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment," Omega, Elsevier, vol. 39(6), pages 620-626, December.
    10. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    11. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    12. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    13. Adrian Gepp & Kuldeep Kumar & Sukanto Bhattacharya, 2010. "Business failure prediction using decision trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 536-555.
    14. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    15. Pendharkar, Parag C., 2002. "A potential use of data envelopment analysis for the inverse classification problem," Omega, Elsevier, vol. 30(3), pages 243-248, June.
    16. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    17. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    18. Wu, Desheng(Dash) & Liang, Liang & Yang, Zijiang, 2008. "Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 206-220, September.
    19. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salim Lahmiri, 2017. "A two‐step system for direct bank telemarketing outcome classification," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(1), pages 49-55, January.
    2. Salim Lahmiri & Stelios Bekiros & Anastasia Giakoumelou & Frank Bezzina, 2020. "Performance assessment of ensemble learning systems in financial data classification," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 3-9, January.
    3. Salim Lahmiri, 2016. "Features selection, data mining and finacial risk classification: a comparative study," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(4), pages 265-275, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hui & Sun, Jie, 2012. "Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples – Evidence from the Chinese hotel industry," Tourism Management, Elsevier, vol. 33(3), pages 622-634.
    2. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    3. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    4. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    5. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    6. Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
    7. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    8. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    9. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    10. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    11. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    12. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Forecast bankruptcy using a blend of clustering and MARS model: case of US banks," Annals of Operations Research, Springer, vol. 281(1), pages 27-64, October.
    13. Sheikh Rabiul Islam & William Eberle & Sheikh K. Ghafoor & Sid C. Bundy & Douglas A. Talbert & Ambareen Siraj, 2019. "Investigating bankruptcy prediction models in the presence of extreme class imbalance and multiple stages of economy," Papers 1911.09858, arXiv.org.
    14. Ming-Fu Hsu & Chingho Chang & Jhih‐Hong Zeng, 2022. "Automated text mining process for corporate risk analysis and management," Risk Management, Palgrave Macmillan, vol. 24(4), pages 386-419, December.
    15. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    16. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    17. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    18. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    19. Carlos Serrano-Cinca & Yolanda Fuertes-Call鮠 & Bego uti鲲ez-Nieto & Beatriz Cuellar-Fernᮤez, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
    20. Ming-Fu Hsu & Ying-Shao Hsin & Fu-Jiing Shiue, 2022. "Business analytics for corporate risk management and performance improvement," Annals of Operations Research, Springer, vol. 315(2), pages 629-669, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:19:y:2012:i:4:p:229-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.