IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v40y2019i6p951-967.html
   My bibliography  Save this article

Exact Discrete Representations of Linear Continuous Time Models with Mixed Frequency Data

Author

Listed:
  • Michael A. Thornton

Abstract

The time aggregation of vector linear processes containing (i) mixed stock‐flow data and (ii) aggregated at mixed frequencies, is explored, focusing on a method to translate the parameters of the underlying continuous time model into those of an equivalent model of the observed data. Based on manipulations of a general state‐space form, the results may be used to model multiple frequencies or aggregation schemes. Estimation of the continuous time parameters via the ARMA representation of the observable data vector is discussed and demonstrated in an application to model stock price and dividend data. Simulation evidence suggests that these estimators have superior properties to the traditional approach of concentrating the data to a single low frequency.

Suggested Citation

  • Michael A. Thornton, 2019. "Exact Discrete Representations of Linear Continuous Time Models with Mixed Frequency Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 951-967, November.
  • Handle: RePEc:bla:jtsera:v:40:y:2019:i:6:p:951-967
    DOI: 10.1111/jtsa.12471
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12471
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
    2. Cuixia Jiang & Tingting Zhao & Qifa Xu & Dan Hu, 2024. "An unrestricted MIDAS ordered logit model with applications to credit ratings," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2722-2739, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:40:y:2019:i:6:p:951-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.