IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v17y2008i1p67-81.html
   My bibliography  Save this article

Estimating the cost‐effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach

Author

Listed:
  • Paul C. Lambert
  • Lucinda J. Billingham
  • Nicola J. Cooper
  • Alex J. Sutton
  • Keith R. Abrams

Abstract

There is an increasing need to establish whether health‐care interventions are cost effective as well as clinically effective. It is becoming increasingly common for cost studies to be incorporated into clinical trials, either on all patients or more usually on a subset of patients. Establishing the total cost per patient is complex, as it requires information on resource use, which may come from a variety of different sources. This complexity may lead to considerable missing data, and can result in some patients only having partial cost information. In this paper we consider a clinical trial consisting of 351 patients with advanced non‐small cell lung cancer comparing chemotherapy with standard palliative care. A subset of 115 patients was selected for the cost sub‐study. Total cost was split into four components, for which resource use was collected. Complete resource data were available on 82 patients. For the remaining patients at least one of the cost components was missing. The objective of this paper is to develop a Bayesian approach which simultaneously models both the clinical effectiveness data and the cost data, by modelling the individual components. This also provides estimates of the cost‐effectiveness in terms of the Incremental Net Monetary Benefit (INMB) and Cost‐Effectiveness Acceptability Curves (CEAC). We compare a number of different models of increasing complexity. The models estimate the interrelationships between the four cost components and survival, and thus enable a predictive distribution for each missing cost item to be obtained. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Paul C. Lambert & Lucinda J. Billingham & Nicola J. Cooper & Alex J. Sutton & Keith R. Abrams, 2008. "Estimating the cost‐effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 17(1), pages 67-81, January.
  • Handle: RePEc:wly:hlthec:v:17:y:2008:i:1:p:67-81
    DOI: 10.1002/hec.1243
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.1243
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.1243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits," Medical Decision Making, , vol. 18(2_suppl), pages 68-80, April.
    4. N. G. Best & D. J. Spiegelhalter & A. Thomas & C. E. G. Brayne, 1996. "Bayesian Analysis of Realistically Complex Models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(2), pages 323-342, March.
    5. Andrew Briggs & Richard Nixon & Simon Dixon & Simon Thompson, 2005. "Parametric modelling of cost data: some simulation evidence," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 421-428, April.
    6. Nicola J. Cooper & Alex J. Sutton & Miranda Mugford & Keith R. Abrams, 2003. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Cost-of-Illness Data," Medical Decision Making, , vol. 23(1), pages 38-53, January.
    7. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aline Gauthier & Andrea Manca & Susan Anton, 2009. "Bayesian Modelling of Healthcare Resource Use in Multinational Randomized Clinical Trials," PharmacoEconomics, Springer, vol. 27(12), pages 1017-1029, December.
    2. Alexina J. Mason & Manuel Gomes & Richard Grieve & James R. Carpenter, 2018. "A Bayesian framework for health economic evaluation in studies with missing data," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1670-1683, November.
    3. Manuel Gomes & Karla Díaz-Ordaz & Richard Grieve & Michael G. Kenward, 2013. "Multiple Imputation Methods for Handling Missing Data in Cost-effectiveness Analyses That Use Data from Hierarchical Studies," Medical Decision Making, , vol. 33(8), pages 1051-1063, November.
    4. Rita Faria & Manuel Gomes & David Epstein & Ian White, 2014. "A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials," PharmacoEconomics, Springer, vol. 32(12), pages 1157-1170, December.
    5. Daniel P Beavers & James D Stamey, 2018. "Bayesian sample size determination for cost-effectiveness studies with censored data," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    6. Andrea Gabrio & Alexina J. Mason & Gianluca Baio, 2017. "Handling Missing Data in Within-Trial Cost-Effectiveness Analysis: A Review with Future Recommendations," PharmacoEconomics - Open, Springer, vol. 1(2), pages 79-97, June.
    7. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    8. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    2. Caterina Conigliani & Andrea Tancredi, 2009. "A Bayesian model averaging approach for cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 18(7), pages 807-821, July.
    3. Basu, Anirban & Jena, Anupam B. & Philipson, Tomas J., 2011. "The impact of comparative effectiveness research on health and health care spending," Journal of Health Economics, Elsevier, vol. 30(4), pages 695-706, July.
    4. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    5. Clarke, Philip M. & Hayes, Alison J., 2009. "Measuring achievement: Changes in risk factors for cardiovascular disease in Australia," Social Science & Medicine, Elsevier, vol. 68(3), pages 552-561, February.
    6. Niklas Zethraeus & Magnus Johannesson & Bengt Jönsson & Mickael Löthgren & Magnus Tambour, 2003. "Advantages of Using the Net-Benefit Approach for Analysing Uncertainty in Economic Evaluation Studies," PharmacoEconomics, Springer, vol. 21(1), pages 39-48, January.
    7. Jordan Amdahl & Jose Diaz & Arati Sharma & Jinhee Park & David Chandiwana & Thomas E Delea, 2017. "Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    8. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    9. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    10. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    11. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    12. Andrew H. Briggs & Bernie J. O'Brien, 2001. "The death of cost‐minimization analysis?," Health Economics, John Wiley & Sons, Ltd., vol. 10(2), pages 179-184, March.
    13. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    14. John Mullahy, 2017. "Individual Results May Vary: Elementary Analytics of Inequality-Probability Bounds, with Applications to Health-Outcome Treatment Effects," NBER Working Papers 23603, National Bureau of Economic Research, Inc.
    15. Andrew Briggs, 2012. "Statistical Methods for Cost-effectiveness Analysis Alongside Clinical Trials," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 50, Edward Elgar Publishing.
    16. Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392, April.
    17. Quang Dang Nguyen & Mikhail Prokopenko, 2022. "A general framework for optimising cost-effectiveness of pandemic response under partial intervention measures," Papers 2205.08996, arXiv.org, revised Nov 2022.
    18. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    19. Pauline Chauvin & Jean-Michel Josselin & Denis Heresbach, 2012. "Incremental net benefit and acceptability of alternative health policies: a case study of mass screening for colorectal cancer," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(3), pages 237-250, June.
    20. Andrea Gabrio & Michael J. Daniels & Gianluca Baio, 2020. "A Bayesian parametric approach to handle missing longitudinal outcome data in trial‐based health economic evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 607-629, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:17:y:2008:i:1:p:67-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.