IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v33y2013i8p1051-1063.html
   My bibliography  Save this article

Multiple Imputation Methods for Handling Missing Data in Cost-effectiveness Analyses That Use Data from Hierarchical Studies

Author

Listed:
  • Manuel Gomes
  • Karla Díaz-Ordaz
  • Richard Grieve
  • Michael G. Kenward

Abstract

Purpose. Multiple imputation (MI) has been proposed for handling missing data in cost-effectiveness analyses (CEAs). In CEAs that use cluster randomized trials (CRTs), the imputation model, like the analysis model, should recognize the hierarchical structure of the data. This paper contrasts a multilevel MI approach that recognizes clustering, with single-level MI and complete case analysis (CCA) in CEAs that use CRTs. Methods. We consider a multilevel MI approach compatible with multilevel analytical models for CEAs that use CRTs. We took fully observed data from a CEA that evaluated an intervention to improve diagnosis of active labor in primiparous women using a CRT (2078 patients, 14 clusters). We generated scenarios with missing costs and outcomes that differed, for example, according to the proportion with missing data (10%–50%), the covariates that predicted missing data (individual, cluster-level), and the missingness mechanism: missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR). We estimated incremental net benefits (INBs) for each approach and compared them with the estimates from the fully observed data, the “true†INBs. Results. When costs and outcomes were assumed to be MCAR, the INBs for each approach were similar to the true estimates. When data were MAR, the point estimates from the CCA differed from the true estimates. Multilevel MI provided point estimates and standard errors closer to the true values than did single-level MI across all settings, including those in which a high proportion of observations had cost and outcome data MAR and when data were MNAR. Conclusions. Multilevel MI accommodates the multilevel structure of the data in CEAs that use cluster trials and provides accurate cost-effectiveness estimates across the range of circumstances considered.

Suggested Citation

  • Manuel Gomes & Karla Díaz-Ordaz & Richard Grieve & Michael G. Kenward, 2013. "Multiple Imputation Methods for Handling Missing Data in Cost-effectiveness Analyses That Use Data from Hierarchical Studies," Medical Decision Making, , vol. 33(8), pages 1051-1063, November.
  • Handle: RePEc:sae:medema:v:33:y:2013:i:8:p:1051-1063
    DOI: 10.1177/0272989X13492203
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X13492203
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X13492203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Grieve & Richard Nixon & Simon G. Thompson & John Cairns, 2007. "Multilevel models for estimating incremental net benefits in multinational studies," Health Economics, John Wiley & Sons, Ltd., vol. 16(8), pages 815-826, August.
    2. Manuel Gomes & Richard Grieve & Richard Nixon & Edmond S.‐W. Ng & James Carpenter & Simon G. Thompson, 2012. "Methods For Covariate Adjustment In Cost‐Effectiveness Analysis That Use Cluster Randomised Trials," Health Economics, John Wiley & Sons, Ltd., vol. 21(9), pages 1101-1118, September.
    3. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.
    4. Richard Grieve & John Cairns & Simon G. Thompson, 2010. "Improving costing methods in multicentre economic evaluation: the use of multiple imputation for unit costs," Health Economics, John Wiley & Sons, Ltd., vol. 19(8), pages 939-954, August.
    5. Jan B. Oostenbrink & Maiwenn J. Al, 2005. "The analysis of incomplete cost data due to dropout," Health Economics, John Wiley & Sons, Ltd., vol. 14(8), pages 763-776, August.
    6. Paul C. Lambert & Lucinda J. Billingham & Nicola J. Cooper & Alex J. Sutton & Keith R. Abrams, 2008. "Estimating the cost‐effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 17(1), pages 67-81, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Gomes & Nils Gutacker & Chris Bojke & Andrew Street, 2016. "Addressing Missing Data in Patient‐Reported Outcome Measures (PROMS): Implications for the Use of PROMS for Comparing Provider Performance," Health Economics, John Wiley & Sons, Ltd., vol. 25(5), pages 515-528, May.
    2. Manuel Gomes & Nils Gutacker & Chris Bojke & Andrew Street, 2014. "Addressing missing data in patient-reported outcome measures (PROMs): implications for comparing provider performance," Working Papers 101cherp, Centre for Health Economics, University of York.
    3. Manju, Md Abu & Candel, Math J.J.M. & van Breukelen, Gerard J.P., 2021. "Robustness of cost-effectiveness analyses of cluster randomized trials assuming bivariate normality against skewed cost data," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Alexina J. Mason & Manuel Gomes & Richard Grieve & James R. Carpenter, 2018. "A Bayesian framework for health economic evaluation in studies with missing data," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1670-1683, November.
    5. Jackie, Yenerall & Wen, You & George, Davis & Paul, Estabrooks, 2015. "Examining Ways to Handle Non-Random Missingness in CEA through Econometric and Statistics Lenses," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205690, Agricultural and Applied Economics Association.
    6. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    7. Alastair Canaway & Emma Frew & Emma Lancashire & Miranda Pallan & Karla Hemming & Peymane Adab & on behalf of the WAVES trial investigators, 2019. "Economic evaluation of a childhood obesity prevention programme for children: Results from the WAVES cluster randomised controlled trial conducted in schools," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    2. Aline Gauthier & Andrea Manca & Susan Anton, 2009. "Bayesian Modelling of Healthcare Resource Use in Multinational Randomized Clinical Trials," PharmacoEconomics, Springer, vol. 27(12), pages 1017-1029, December.
    3. Richard Grieve & John Cairns & Simon G. Thompson, 2010. "Improving costing methods in multicentre economic evaluation: the use of multiple imputation for unit costs," Health Economics, John Wiley & Sons, Ltd., vol. 19(8), pages 939-954, August.
    4. Rita Faria & Manuel Gomes & David Epstein & Ian White, 2014. "A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials," PharmacoEconomics, Springer, vol. 32(12), pages 1157-1170, December.
    5. Manuel Gomes & Richard Grieve & Richard Nixon & W. J. Edmunds, 2012. "Statistical Methods for Cost-Effectiveness Analyses That Use Data from Cluster Randomized Trials," Medical Decision Making, , vol. 32(1), pages 209-220, January.
    6. Andrea Gabrio & Alexina J. Mason & Gianluca Baio, 2017. "Handling Missing Data in Within-Trial Cost-Effectiveness Analysis: A Review with Future Recommendations," PharmacoEconomics - Open, Springer, vol. 1(2), pages 79-97, June.
    7. Christian E. H. Boehler & Joanne Lord, 2016. "Mind the Gap! A Multilevel Analysis of Factors Related to Variation in Published Cost-Effectiveness Estimates within and between Countries," Medical Decision Making, , vol. 36(1), pages 31-47, January.
    8. Theodoros Mantopoulos & Paul M. Mitchell & Nicky J. Welton & Richard McManus & Lazaros Andronis, 2016. "Choice of statistical model for cost-effectiveness analysis and covariate adjustment: empirical application of prominent models and assessment of their results," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 927-938, November.
    9. Alexina J. Mason & Manuel Gomes & Richard Grieve & James R. Carpenter, 2018. "A Bayesian framework for health economic evaluation in studies with missing data," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1670-1683, November.
    10. Helen A. Dakin & José Leal & Andrew Briggs & Philip Clarke & Rury R. Holman & Alastair Gray, 2020. "Accurately Reflecting Uncertainty When Using Patient-Level Simulation Models to Extrapolate Clinical Trial Data," Medical Decision Making, , vol. 40(4), pages 460-473, May.
    11. Manuel Gomes & Richard Grieve & Richard Nixon & Edmond S.‐W. Ng & James Carpenter & Simon G. Thompson, 2012. "Methods For Covariate Adjustment In Cost‐Effectiveness Analysis That Use Cluster Randomised Trials," Health Economics, John Wiley & Sons, Ltd., vol. 21(9), pages 1101-1118, September.
    12. Peter Makai & Willemijn Looman & Eddy Adang & René Melis & Elly Stolk & Isabelle Fabbricotti, 2015. "Cost-effectiveness of integrated care in frail elderly using the ICECAP-O and EQ-5D: does choice of instrument matter?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(4), pages 437-450, May.
    13. Andrea Gabrio & Catrin Plumpton & Sube Banerjee & Baptiste Leurent, 2022. "Linear mixed models to handle missing at random data in trial‐based economic evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1276-1287, June.
    14. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    15. Thompson, Simon G. & Nixon, Richard M. & Grieve, Richard, 2006. "Addressing the issues that arise in analysing multicentre cost data, with application to a multinational study," Journal of Health Economics, Elsevier, vol. 25(6), pages 1015-1028, November.
    16. Carmen Selva-Sevilla & Elena Conde-Montero & Manuel Gerónimo-Pardo, 2020. "Bayesian Regression Model for a Cost-Utility and Cost-Effectiveness Analysis Comparing Punch Grafting Versus Usual Care for the Treatment of Chronic Wounds," IJERPH, MDPI, vol. 17(11), pages 1-21, May.
    17. Andrea Gabrio & Michael J. Daniels & Gianluca Baio, 2020. "A Bayesian parametric approach to handle missing longitudinal outcome data in trial‐based health economic evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 607-629, February.
    18. Carmen Selva-Sevilla & F Dámaso Fernández-Ginés & Manuel Cortiñas-Sáenz & Manuel Gerónimo-Pardo, 2021. "Cost-effectiveness analysis of domiciliary topical sevoflurane for painful leg ulcers," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    19. Laura Haas & Tom Stargardt & Jonas Schreyoegg, 2012. "Cost-effectiveness of open versus laparoscopic appendectomy: a multilevel approach with propensity score matching," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(5), pages 549-560, October.
    20. Alexina J. Mason & Manuel Gomes & James Carpenter & Richard Grieve, 2021. "Flexible Bayesian longitudinal models for cost‐effectiveness analyses with informative missing data," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3138-3158, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:33:y:2013:i:8:p:1051-1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.