IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v15y2006i4p383-392.html
   My bibliography  Save this article

Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods

Author

Listed:
  • Bas Groot Koerkamp
  • M. G. Myriam Hunink
  • Theo Stijnen
  • Milton C. Weinstein

Abstract

Decisions in health care must be made, despite uncertainty about benefits, risks, and costs. Value of information analysis is a theoretically sound method to estimate the expected value of future quantitative research pertaining to an uncertain decision. If the expected value of future research does not exceed the cost of research, additional research is not justified, and decisions should be based on current evidence, despite the uncertainty. To assess the importance of individual parameters relevant to a decision, different value of information methods have been suggested. The generally recommended method assumes that the expected value of perfect knowledge concerning a parameter is estimated as the reduction in expected opportunity loss. This method, however, results in biased expected values and incorrect importance ranking of parameters. The objective of this paper is to set out the correct methods to estimate the partial expected value of perfect information and to demonstrate why the generally recommended method is incorrect conceptually and mathematically. Copyright © 2005 John Wiley & Sons, Ltd.

Suggested Citation

  • Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392, April.
  • Handle: RePEc:wly:hlthec:v:15:y:2006:i:4:p:383-392
    DOI: 10.1002/hec.1064
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.1064
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.1064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. Claxton & P. J. Neumannn & S. S. Araki & M. C. Weinstein, "undated". "Bayesian Value-of-Information Analysis: An Application to a Policy Model of Alzheimer's Disease," Discussion Papers 00/39, Department of Economics, University of York.
    2. Karl Claxton & Simon Eggington & Laura Ginnelly & Susan Griffin & Christopher McCabe & Zoe Philips & Paul Tappenden & Alan Wailoo, 2005. "A Pilot Study of Value of Information Analysis to Support Research Recommendations for the National Institute for Health and Clinical Excellence," Working Papers 004cherp, Centre for Health Economics, University of York.
    3. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    4. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits," Medical Decision Making, , vol. 18(2_suppl), pages 68-80, April.
    5. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    6. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    7. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galioto, F., 2018. "The value of information for the management of water resources in agriculture: comparing the economic impact of alternative sources of information to schedule irrigation," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277384, International Association of Agricultural Economists.
    2. Haitham Tuffaha & Shelley Roberts & Wendy Chaboyer & Louisa Gordon & Paul Scuffham, 2015. "Cost-Effectiveness and Value of Information Analysis of Nutritional Support for Preventing Pressure Ulcers in High-risk Patients: Implement Now, Research Later," Applied Health Economics and Health Policy, Springer, vol. 13(2), pages 167-179, April.
    3. Dirk Müller & Eleanor Pullenayegum & Afschin Gandjour, 2015. "Impact of small study bias on cost-effectiveness acceptability curves and value of information analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(2), pages 219-223, March.
    4. Laura McCullagh & Susanne Schmitz & Michael Barry & Cathal Walsh, 2017. "Examining the Feasibility and Utility of Estimating Partial Expected Value of Perfect Information (via a Nonparametric Approach) as Part of the Reimbursement Decision-Making Process in Ireland: Applic," PharmacoEconomics, Springer, vol. 35(11), pages 1177-1185, November.
    5. Gordon Hazen & Emanuele Borgonovo & Xuefei Lu, 2023. "Information Density in Decision Analysis," Decision Analysis, INFORMS, vol. 20(2), pages 89-108, June.
    6. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    7. Galioto, Francesco & Chatzinikolaou, Parthena & Raggi, Meri & Viaggi, Davide, 2020. "The value of information for the management of water resources in agriculture: Assessing the economic viability of new methods to schedule irrigation," Agricultural Water Management, Elsevier, vol. 227(C).
    8. Williams, Byron K. & Eaton, Mitchell J. & Breininger, David R., 2011. "Adaptive resource management and the value of information," Ecological Modelling, Elsevier, vol. 222(18), pages 3429-3436.
    9. Andrew H. Briggs & Milton C. Weinstein & Elisabeth A. L. Fenwick & Jonathan Karnon & Mark J. Sculpher & A. David Paltiel, 2012. "Model Parameter Estimation and Uncertainty Analysis," Medical Decision Making, , vol. 32(5), pages 722-732, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    2. Brennan, Alan & Kharroubi, Samer A., 2007. "Efficient computation of partial expected value of sample information using Bayesian approximation," Journal of Health Economics, Elsevier, vol. 26(1), pages 122-148, January.
    3. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    4. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    5. Haitham Tuffaha & Shelley Roberts & Wendy Chaboyer & Louisa Gordon & Paul Scuffham, 2015. "Cost-Effectiveness and Value of Information Analysis of Nutritional Support for Preventing Pressure Ulcers in High-risk Patients: Implement Now, Research Later," Applied Health Economics and Health Policy, Springer, vol. 13(2), pages 167-179, April.
    6. Douglas Coyle, 2003. "Determining the optimal combinations of mutually exclusive interventions: a response to Hutubessy and colleagues," Health Economics, John Wiley & Sons, Ltd., vol. 12(2), pages 159-162, February.
    7. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    8. Meltzer, David, 2001. "Addressing uncertainty in medical cost-effectiveness analysis: Implications of expected utility maximization for methods to perform sensitivity analysis and the use of cost-effectiveness analysis to s," Journal of Health Economics, Elsevier, vol. 20(1), pages 109-129, January.
    9. Claxton, K. & Thompson, K. M., 2001. "A dynamic programming approach to the efficient design of clinical trials," Journal of Health Economics, Elsevier, vol. 20(5), pages 797-822, September.
    10. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    11. Doug Coyle & Jeremy Oakley, 2008. "Estimating the expected value of partial perfect information: a review of methods," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 9(3), pages 251-259, August.
    12. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    13. Fleurence, Rachael L. & Torgerson, David J., 2004. "Setting priorities for research," Health Policy, Elsevier, vol. 69(1), pages 1-10, July.
    14. Douglas Coyle & Martin J. Buxton & Bernie J. O'Brien, 2003. "Stratified cost‐effectiveness analysis: a framework for establishing efficient limited use criteria," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 421-427, May.
    15. Elizabeth Fenwick & Karl Claxton & Mark Sculpher & Andrew Briggs, 2000. "Improving the efficiency and relevance of health technology assessent: the role of iterative decision analytic modelling," Working Papers 179chedp, Centre for Health Economics, University of York.
    16. Elisabeth Fenwick & Karl Claxton & Mark Sculpher, 2005. "The value of implementation and the value of information: combined and uneven development," Working Papers 005cherp, Centre for Health Economics, University of York.
    17. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    18. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    19. Eckermann, Simon & Coelli, Tim, 2013. "Including quality attributes in efficiency measures consistent with net benefit: Creating incentives for evidence based medicine in practice," Social Science & Medicine, Elsevier, vol. 76(C), pages 159-168.
    20. Andrea Manca & Nigel Rice & Mark J. Sculpher & Andrew H. Briggs, 2005. "Assessing generalisability by location in trial‐based cost‐effectiveness analysis: the use of multilevel models," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 471-485, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:15:y:2006:i:4:p:383-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.