Experimental investigation of CO2 absorption enthalpy in conventional imidazolium ionic liquids
Author
Abstract
Suggested Citation
DOI: 10.1002/ghg.1777
Download full text from publisher
References listed on IDEAS
- Mei Wang & Na Rao & Mingming Wang & Qunpeng Cheng & Shunxi Zhang & Jianfen Li, 2018. "Properties of ionic liquid mixtures of [NH2e‐mim][BF4] and [bmim][BF4] as absorbents for CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 483-492, June.
- Clair Gough & Paul Upham, 2011. "Biomass energy with carbon capture and storage (BECCS or Bio‐CCS)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(4), pages 324-334, December.
- Xie, Yujiao & Zhang, Yingying & Lu, Xiaohua & Ji, Xiaoyan, 2014. "Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 136(C), pages 325-335.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
- Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
- Levidow, Les & Borda-Rodriguez, Alexander & Papaioannou, Theo, 2014. "UK bioenergy innovation priorities: Making expectations credible in state-industry arenas," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 191-204.
- Jagu Schippers, Emma & Massol, Olivier, 2022.
"Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting,"
Energy Policy, Elsevier, vol. 171(C).
- Emma Jagu Schippers & Olivier Massol, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Post-Print hal-03893021, HAL.
- Emma Jagu & Olivier Massol, 2022. "Unlocking CO2 Infrastructure Deployment The Impact of Carbon Removal Accounting," Working Papers hal-03609403, HAL.
- Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
- Huang, Hong & Peters, Ralf & Samsun, Remzi Can & Stolten, Detlef & He, Chang & Zhou, Xiantai, 2024. "A novel intercooling carbon dioxide capture process using ionic liquids with ultra-low energy consumption," Energy, Elsevier, vol. 301(C).
- Cheng, Jun & Wang, Yali & Liu, Niu & Hou, Wen & Zhou, Junhu, 2020. "Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks," Applied Energy, Elsevier, vol. 272(C).
- Klaus, Geraldine & Ernst, Andreas & Oswald, Lisa, 2020. "Psychological factors influencing laypersons’ acceptance of climate engineering, climate change mitigation and business as usual scenarios," Technology in Society, Elsevier, vol. 60(C).
- Fridahl, Mathias, 2017. "Socio-political prioritization of bioenergy with carbon capture and storage," Energy Policy, Elsevier, vol. 104(C), pages 89-99.
- Burke, Joshua & Gambhir, Ajay, 2022. "Policy incentives for greenhouse gas removal techniques: the risks of premature inclusion in carbon markets and the need for a multi-pronged policy framework," LSE Research Online Documents on Economics 115010, London School of Economics and Political Science, LSE Library.
- Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2018. "Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 436-455.
- Zenon Ziobrowski & Adam Rotkegel, 2021. "Feasibility study of CO2/N2 separation intensification on supported ionic liquid membranes by commonly used impregnation methods," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 297-312, April.
- Udayan Singh & Erica M. Loudermilk & Lisa M. Colosi, 2021. "Accounting for the role of transport and storage infrastructure costs in carbon negative bioenergy deployment," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 144-164, February.
- Deetman, Sebastiaan & Hof, Andries F. & Pfluger, Benjamin & van Vuuren, Detlef P. & Girod, Bastien & van Ruijven, Bas J., 2013. "Deep greenhouse gas emission reductions in Europe: Exploring different options," Energy Policy, Elsevier, vol. 55(C), pages 152-164.
- Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2016. "Screening of conventional ionic liquids for carbon dioxide capture and separation," Applied Energy, Elsevier, vol. 162(C), pages 1160-1170.
- Ibrahim, Muna Hassan & Hayyan, Maan & Hashim, Mohd Ali & Hayyan, Adeeb, 2017. "The role of ionic liquids in desulfurization of fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1534-1549.
- Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
- Gao, Jubao & Cao, Lingdi & Dong, Haifeng & Zhang, Xiangping & Zhang, Suojiang, 2015. "Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 154(C), pages 771-780.
- Edyta Słupek & Patrycja Makoś & Jacek Gębicki, 2020. "Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane," Energies, MDPI, vol. 13(13), pages 1-19, July.
- García-Díez, E. & García-Labiano, F. & de Diego, L.F. & Abad, A. & Gayán, P. & Adánez, J. & Ruíz, J.A.C., 2016. "Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities," Applied Energy, Elsevier, vol. 169(C), pages 491-498.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:8:y:2018:i:4:p:713-720. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.