IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i4p637-648.html
   My bibliography  Save this article

SO 2 removal characteristics using waste CaO from calcium looping CO 2 capture process

Author

Listed:
  • Yan Shao
  • Donglin He
  • Changlei Qin
  • Jingyu Ran
  • Li Zhang

Abstract

Calcium looping (CaL) has been identified to be a valuable candidate for CO 2 capture and has entered a stage of large‐scale experiment and application. However, the serious loss‐in‐capacity problem will result in the production of a large amount of waste CaO, which not only increases the economic cost of the capture process, also generates a huge risk of secondary pollution. In this work, the waste CaO from CaL was first proposed to be used for SO 2 removal by wet desulfurization and the SO 2 sorption characteristics were comprehensively studied. Through experimental test and analysis, it is found that CaL‐spent CaO derived from dolomite can achieve higher efficiency than that from the limestone in SO 2 removal. The effect of CaL cycle on the SO 2 removal performance is observed to be small when the cycle number is under 40. Beyond that, the SO 2 removal capacity decreases quickly, which is thought to be due to the variation in slaking rate determined by the compromise between the surface area and pore size distribution of the material. Furthermore, sulfation performance of waste CaO is found to be superior with a particle size smaller than 0.4 mm. This work proves the feasibility of the utilization of CaL‐spent CaO in wet SO 2 removal, and could be beneficial for understanding the SO 2 sorption characteristics of CaL‐spent materials. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Yan Shao & Donglin He & Changlei Qin & Jingyu Ran & Li Zhang, 2017. "SO 2 removal characteristics using waste CaO from calcium looping CO 2 capture process," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 637-648, August.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:4:p:637-648
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1676
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    2. Ridha, Firas N. & Manovic, Vasilije & Macchi, Arturo & Anthony, Edward J., 2012. "The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder," Applied Energy, Elsevier, vol. 92(C), pages 415-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    2. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    3. Itskos, Grigorios & Grammelis, Panagiotis & Scala, Fabrizio & Pawlak-Kruczek, Halina & Coppola, Antonio & Salatino, Piero & Kakaras, Emmanuel, 2013. "A comparative characterization study of Ca-looping natural sorbents," Applied Energy, Elsevier, vol. 108(C), pages 373-382.
    4. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
    5. Peng Yang & Zhao Sun & Lunbo Duan & Hongjian Tang, 2020. "Mechanism of steam‐declined sulfation and steam‐enhanced carbonation by DFT calculations," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 472-483, April.
    6. Xiao, Jing & Wu, Luoming & Wu, Ying & Liu, Bing & Dai, Lu & Li, Zhong & Xia, Qibin & Xi, Hongxia, 2014. "Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide," Applied Energy, Elsevier, vol. 113(C), pages 78-85.
    7. Tritippayanon, Rattapong & Piemjaiswang, Ratchanon & Piumsomboon, Pornpote & Chalermsinsuwan, Benjapon, 2019. "Computational fluid dynamics of sulfur dioxide and carbon dioxide capture using mixed feeding of calcium carbonate/calcium oxide in an industrial scale circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 250(C), pages 493-502.
    8. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    9. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    10. Xiaotong Ma & Yingjie Li & Yi Qian & Zeyan Wang, 2019. "A Carbide Slag-Based, Ca 12 Al 14 O 33 -Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO 2 Capture," Energies, MDPI, vol. 12(13), pages 1-17, July.
    11. Wei Liu & Ye Wu & Tianyi Cai & Xiaoping Chen & Dong Liu, 2019. "Use of nanoparticles Cu/TiO(OH)2 for CO2 removal with K2CO3/KHCO3 based solution: enhanced thermal conductivity and reaction kinetics enhancing the CO2 sorption/desorption performance of K2CO3/KHCO3," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 10-18, February.
    12. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Erans, María & Jeremias, Michal & Zheng, Liya & Yao, Joseph G. & Blamey, John & Manovic, Vasilije & Fennell, Paul S. & Anthony, Edward J., 2018. "Pilot testing of enhanced sorbents for calcium looping with cement production," Applied Energy, Elsevier, vol. 225(C), pages 392-401.
    14. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    15. Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
    16. Wang, Wenjing & Li, Yingjie & Xie, Xin & Sun, Rongyue, 2014. "Effect of the presence of HCl on cyclic CO2 capture of calcium-based sorbent in calcium looping process," Applied Energy, Elsevier, vol. 125(C), pages 246-253.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:4:p:637-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.