IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i3p550-561.html
   My bibliography  Save this article

Experimental results of split flow process using AMP/PZ solution for post‐combustion CO 2 capture

Author

Listed:
  • Aleksander Krótki
  • Adam Tatarczuk
  • Marcin Stec
  • Tomasz Spietz
  • Lucyna Więcław‐Solny
  • Andrzej Wilk
  • Ashleigh Cousins

Abstract

The goal of reducing energy consumption of the CO 2 removal process from flue gas may be pursued by developing new solvents as well as by modifying the technological process itself. This paper provides a discussion of the experimental results obtained from a process development unit (PDU) using an aqueous 2‐amino‐2‐methyl‐1‐propanol (AMP) solution activated with piperazine (PZ) for post‐combustion carbon capture located at the Clean Coal Technologies Centre in Poland. The results are compared for two distinct process setups, namely one with the lean amine stream being split – a solution referred to as split flow, and a system with standard configuration. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Aleksander Krótki & Adam Tatarczuk & Marcin Stec & Tomasz Spietz & Lucyna Więcław‐Solny & Andrzej Wilk & Ashleigh Cousins, 2017. "Experimental results of split flow process using AMP/PZ solution for post‐combustion CO 2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 550-561, June.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:3:p:550-561
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1663
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashleigh Cousins & Aaron Cottrell & Anthony Lawson & Sanger Huang & Paul H.M. Feron, 2012. "Model verification and evaluation of the rich‐split process modification at an Australian‐based post combustion CO 2 capture pilot plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 2(5), pages 329-345, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nwaoha, Chikezie & Tontiwachwuthikul, Paitoon, 2019. "Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration," Applied Energy, Elsevier, vol. 250(C), pages 1202-1216.
    2. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    3. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    4. Wawrzyńczak, Dariusz & Panowski, Marcin & Majchrzak-Kucęba, Izabela, 2019. "Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon," Energy, Elsevier, vol. 180(C), pages 787-796.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    2. Oko, Eni & Ramshaw, Colin & Wang, Meihong, 2018. "Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 223(C), pages 302-316.
    3. Liqiang Xu & Qiufang Cui & Te Tu & Shuo Liu & Long Ji & Shuiping Yan, 2020. "Waste heat recovery from the stripped gas in carbon capture process by membrane technology: Hydrophobic and hydrophilic organic membrane cases," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 421-435, April.
    4. Tu, Te & Yang, Xing & Cui, Qiufang & Shang, Yu & Yan, Shuiping, 2022. "CO2 regeneration energy requirement of carbon capture process with an enhanced waste heat recovery from stripped gas by advanced transport membrane condenser," Applied Energy, Elsevier, vol. 323(C).
    5. Haider Sultan & Umair Hassan Bhatti & Hafiz Ali Muhammad & Sung Chan Nam & Il Hyun Baek, 2021. "Modification of postcombustion CO2 capture process: A techno‐economic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 165-182, February.
    6. Cui, Qiufang & Tu, Te & Ji, Long & Yan, Shuiping, 2021. "CO2 capture cost saving through waste heat recovery using transport membrane condenser in different solvent-based carbon capture processes," Energy, Elsevier, vol. 216(C).
    7. Jiang, Kaiqi & Li, Kangkang & Yu, Hai & Chen, Zuliang & Wardhaugh, Leigh & Feron, Paul, 2017. "Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process," Applied Energy, Elsevier, vol. 202(C), pages 496-506.
    8. Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
    9. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    10. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    11. Li, Kangkang & Jiang, Kaiqi & Jones, Timothy W. & Feron, Paul H.M. & Bennett, Robert D. & Hollenkamp, Anthony F., 2019. "CO2 regenerative battery for energy harvesting from ammonia-based post-combustion CO2 capture," Applied Energy, Elsevier, vol. 247(C), pages 417-425.
    12. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    13. Ashleigh Cousins & Paul Nielsen & Sanger Huang & Aaron Cottrell & Eric Chen & Gary T Rochelle & Paul H M Feron, 2015. "Pilot‐scale evaluation of concentrated piperazine for CO 2 capture at an Australian coal‐fired power station: duration experiments," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 363-373, August.
    14. Paul H.M. Feron & Ashleigh Cousins & Shiwang Gao & Lianbo Liu & Jinyi Wang & Shiqing Wang & Hongwei Niu & Hai Yu & Kangkang Li & Aaron Cottrell, 2017. "Experimental performance assessment of a mono‐ethanolamine‐based post‐combustion CO 2 ‐capture at a coal‐fired power station in China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 486-499, June.
    15. Kim, Jeongnam & Na, Jonggeol & Kim, Kyeongsu & Bak, Ji Hyun & Lee, Hyunjoo & Lee, Ung, 2021. "Learning the properties of a water-lean amine solvent from carbon capture pilot experiments," Applied Energy, Elsevier, vol. 283(C).
    16. Wang, Changhong & Jiang, Kaiqi & Yu, Hai & Yang, Shenghai & Li, Kangkang, 2022. "Copper electrowinning-coupled CO2 capture in solvent based post-combustion capture," Applied Energy, Elsevier, vol. 316(C).
    17. Jiang, Kaiqi & Li, Kangkang, 2023. "Harvesting CO2 reaction enthalpy from amine scrubbing," Energy, Elsevier, vol. 284(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:3:p:550-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.