Learning the properties of a water-lean amine solvent from carbon capture pilot experiments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.116213
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Morgan, Joshua C. & Chinen, Anderson Soares & Anderson-Cook, Christine & Tong, Charles & Carroll, John & Saha, Chiranjib & Omell, Benjamin & Bhattacharyya, Debangsu & Matuszewski, Michael & Bhat, K. S, 2020. "Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 262(C).
- Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
- Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
- Yun, Seokwon & Oh, Se-Young & Kim, Jin-Kuk, 2020. "Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant," Applied Energy, Elsevier, vol. 268(C).
- Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
- Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
- Lai, Qinghua & Kong, Lingli & Gong, Weibo & Russell, Armistead G & Fan, Maohong, 2019. "Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution," Applied Energy, Elsevier, vol. 254(C).
- Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
- Ashleigh Cousins & Aaron Cottrell & Anthony Lawson & Sanger Huang & Paul H.M. Feron, 2012. "Model verification and evaluation of the rich‐split process modification at an Australian‐based post combustion CO 2 capture pilot plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 2(5), pages 329-345, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kezia Megagita Gerby Langie & Kyungjae Tak & Changsoo Kim & Hee Won Lee & Kwangho Park & Dongjin Kim & Wonsang Jung & Chan Woo Lee & Hyung-Suk Oh & Dong Ki Lee & Jai Hyun Koh & Byoung Koun Min & Da Hy, 2022. "Toward economical application of carbon capture and utilization technology with near-zero carbon emission," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
- Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
- Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
- Oko, Eni & Ramshaw, Colin & Wang, Meihong, 2018. "Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 223(C), pages 302-316.
- Haider Sultan & Umair Hassan Bhatti & Hafiz Ali Muhammad & Sung Chan Nam & Il Hyun Baek, 2021. "Modification of postcombustion CO2 capture process: A techno‐economic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 165-182, February.
- Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
- Yin, Xin & Shen, Shufeng, 2023. "Water-lean monophasic absorbents containing secondary alkanolamines and dimethyl sulfoxide for energy-efficient CO2 capture," Energy, Elsevier, vol. 281(C).
- Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
- Wang, Lidong & Fang, Jie & Ma, Haojun & Wang, Chuhuan & Wang, Rujie & Li, Qiangwei & Zhang, Shihan, 2023. "Super-low energy consuming CO2 capture triggered by weak hydrogen bonds in solid-liquid phase separation," Energy, Elsevier, vol. 272(C).
- Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
- Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
- Vega, F. & Camino, S. & Camino, J.A. & Garrido, J. & Navarrete, B., 2019. "Partial oxy-combustion technology for energy efficient CO2 capture process," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
- Fu, Kun & Zheng, Mingzhen & Wang, Haijie & Fu, Dong, 2022. "Effect of water content on the characteristics of CO2 capture processes in absorbents of 2-ethylhexan-1-amine + diglyme," Energy, Elsevier, vol. 244(PA).
- Meng, Fanli & Fu, Kun & Wang, Xueli & Wang, Yixiao & Wang, Lemeng & Fu, Dong, 2024. "Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas," Energy, Elsevier, vol. 286(C).
- Zhang, Weifeng & Xu, Yuanlong & Deng, Zhaoxiong & Wang, Qiuhua, 2022. "Experiments on continuous chemical desorption of CO2-rich solutions," Energy, Elsevier, vol. 239(PD).
- Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
- Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
- Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
More about this item
Keywords
Carbon capture; Water-lean amine solvent; Pilot plant; Machine learning; Bayesian inference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316081. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.