IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v6y2016i5p670-681.html
   My bibliography  Save this article

Assessing the applicability of unsaturated effective stress models to tensile fracturing of sandstone in CO 2 ‐water two‐phase fluids

Author

Listed:
  • Mingze Liu
  • Bing Bai
  • Xiaochun Li
  • Shuai Gao
  • Shaobin Hu
  • Lei Wang
  • Haiqing Wu

Abstract

The description of rock effective stress in CO 2 ‐water two‐phase fluid (CWTPF) is a key issue in the mechanical stability analysis of CO 2 geological sequestration. Related simulation studies often directly used the unsaturated effective stress models without verifying their applicability. In this study, we present a self‐developed hollow‐cylinder tensile tester and a corresponding experimental method to measure the fracturing pressure of sandstone in CWTPF. Based on the apparatus, we conducted tensile fracturing experiments of sandstone in CWTPF. We also carried out fracturing tests of sandstone saturated with water under different effective confining pressure to fit the function of the sandstone's fracturing pressure and effective confining pressure. Then, we selected seven typical unsaturated effective stress models and Finally, we compared the results from the prediction models and experiments to indirectly verify the applicability of these unsaturated effective stress models under CWTPF conditions. The results indicated that the model proposed by Bishop and Donald in 1961 could best describe the effective stress of the tested sandstone in tension fracturing behavior under CWTPF condition. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Mingze Liu & Bing Bai & Xiaochun Li & Shuai Gao & Shaobin Hu & Lei Wang & Haiqing Wu, 2016. "Assessing the applicability of unsaturated effective stress models to tensile fracturing of sandstone in CO 2 ‐water two‐phase fluids," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 670-681, October.
  • Handle: RePEc:wly:greenh:v:6:y:2016:i:5:p:670-681
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1596
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi Li & Wenbin Fei & Xuehao Liu & Xiaochen Wei & Miao Jing & Xiaochun Li, 2014. "Challenging combination of CO 2 geological storage and coal mining in the Ordos basin, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(4), pages 452-467, August.
    2. Streit, Jürgen E & Hillis, Richard R, 2004. "Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock," Energy, Elsevier, vol. 29(9), pages 1445-1456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben Treffeisen & Andreas Henk, 2020. "Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models—A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip," Energies, MDPI, vol. 13(10), pages 1-27, May.
    2. Sean P. Rigby & Ali Alsayah & Richard Seely, 2022. "Impact of Exposure to Supercritical Carbon Dioxide on Reservoir Caprocks and Inter-Layers during Sequestration," Energies, MDPI, vol. 15(20), pages 1-34, October.
    3. Xin, Yue & Zhang, Yindi & Xue, Peng & Wang, Ke & Adu, Emmanuel & Tontiwachwuthikul, Paitoon, 2021. "The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy," Energy, Elsevier, vol. 236(C).
    4. Fugang Wang & Jing Jing & Tianfu Xu & Yanlin Yang & Guangrong Jin, 2016. "Impacts of stratum dip angle on CO 2 geological storage amount and security," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 682-694, October.
    5. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    6. Víctor Vilarrasa & Jonny Rutqvist & Antonio Pio Rinaldi, 2015. "Thermal and capillary effects on the caprock mechanical stability at In Salah, Algeria," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 449-461, August.
    7. Bing Bai & Xiaochun Li & Haiqing Wu & Yongsheng Wang & Mingze Liu, 2017. "A methodology for designing maximum allowable wellhead pressure for CO 2 injection: application to the Shenhua CCS demonstration project, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 158-181, February.
    8. Md Jamilur Rahman & Manzar Fawad & Nazmul Haque Mondol, 2022. "3D Field-Scale Geomechanical Modeling of Potential CO 2 Storage Site Smeaheia, Offshore Norway," Energies, MDPI, vol. 15(4), pages 1-21, February.
    9. Javad Naseryan Moghadam & Nazmul Haque Mondol & Per Aagaard & Helge Hellevang, 2016. "Effective stress law for the permeability of clay‐bearing sandstones by the Modified Clay Shell model," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(6), pages 752-774, December.
    10. Sikandar Khan & Yehia Abel Khulief & Abdullatif Al-Shuhail, 2019. "Mitigating climate change via CO2 sequestration into Biyadh reservoir: geomechanical modeling and caprock integrity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(1), pages 23-52, January.
    11. Ba Nghiep Nguyen & Zhangshuan Hou & Diana H. Bacon & Mark D. White, 2017. "A multiscale hydro‐geochemical‐mechanical approach to analyze faulted CO 2 reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 106-127, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:6:y:2016:i:5:p:670-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.