IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v12y2022i1p67-84.html
   My bibliography  Save this article

Investigation and development of the multicycle of CO2 mineralization with wastewater under standard conditions

Author

Listed:
  • Chanakarn Thamsiriprideeporn
  • Tetsuya Suekane

Abstract

CO2 mineralization is promising for carbon capture and storage (CCS). The multiple reuses of monoethanolamine (MEA) as absorbents for CO2 absorption and carbonate generation with minerals in wastewater between 20 and 25°C at atmospheric pressure (standard conditions) efficiently reduce both cost and energy penalties for industrial application. In this study, the multicycle of CO2 mineralization was performed in three steps: absorption, precipitation, and regeneration. We found that 5 wt.% MEA solution has great potential in terms of 24.26 moles of CO2 absorbing capacity per mole of MEA and 0.1535 moles of carbonate conversion per mole of MEA within less than 1.8 h operation time, which the optimal repetitions was 5‐cycle before MEA complete degradation. To reduce absorption time, we studied packing bed of 2‐, 4‐, 6‐, and 8 mm diameter nonreactive spherical glass beads were operated in the columns with 5 wt.% MEA solutions. The maximum benefit was obtained from the 8‐mm‐packing diameter, which fully accorded 28.85 and 0.1687 moles of CO2 and carbonate, respectively, per mole of 5 wt.% MEA within 44 min, providing the highest conversion in a relatively short time. The efficiency of regenerated MEA absorbent was reduced from 20 to 10% due to degradation. Raman spectroscopy, X‐ray diffractometry, and scanning electron microscopy were used to analyze the composition and crystal structure of carbonates. The main product of carbonates was calcite, which was mixed with complex salts, such as aragonite, magnesite, and dolomite. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Chanakarn Thamsiriprideeporn & Tetsuya Suekane, 2022. "Investigation and development of the multicycle of CO2 mineralization with wastewater under standard conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 67-84, February.
  • Handle: RePEc:wly:greenh:v:12:y:2022:i:1:p:67-84
    DOI: 10.1002/ghg.2123
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2123
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongdong Fang & Lihui Zhang & Linjiang Zou & Feng Duan, 2021. "Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 924-938, October.
    2. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    3. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    4. Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
    5. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    6. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    7. Zevenhoven, Ron & Legendre, Daniel & Said, Arshe & Järvinen, Mika, 2019. "Carbon dioxide dissolution and ammonia losses in bubble columns for precipitated calcium carbonate (PCC) production," Energy, Elsevier, vol. 175(C), pages 1121-1129.
    8. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    10. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    11. Pan, Shu-Yuan & Chiang, Pen-Chi & Chen, Yi-Hung & Tan, Chung-Sung & Chang, E.-E., 2014. "Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion," Applied Energy, Elsevier, vol. 113(C), pages 267-276.
    12. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    13. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    14. Galvez-Martos, J.L. & Morrison, J. & Jauffret, G. & Elsarrag, E. & AlHorr, Y. & Imbabi, M.S. & Glasser, F.P., 2016. "Environmental assessment of aqueous alkaline absorption of carbon dioxide and its use to produce a construction material," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 129-141.
    15. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:12:y:2022:i:1:p:67-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.