IDEAS home Printed from https://ideas.repec.org/a/wly/fufsci/v4y2022i3-4nffo2124.html
   My bibliography  Save this article

Point, interval, and density forecasts: Differences in bias, judgment noise, and overall accuracy

Author

Listed:
  • Xiaoxiao Niu
  • Nigel Harvey

Abstract

There are three main ways in which judgmental predictions are expressed: point forecasts; interval forecasts; probability density forecasts. Do these approaches differ solely in terms of their simplicity of elicitation and the detail they provide? We examined error in values of the central tendency extracted from these three types of forecast in a domain in which all of them are used: lay forecasts of inflation. A first experiment using a between‐participant design showed that the mean level of forecasts and the bias in them are unaffected by the type of forecast but that judgment noise (and, hence, overall error) is higher in point forecasts than in interval or density forecasts. A second experiment replicated the difference between point and interval forecasts in a within‐participant design (of the sort used in inflation surveys) and showed no effect of the order in which different types of forecast are made but revealed that people are more overconfident in interval than in point forecasts. A third experiment showed that volatility in past data increases bias in point but not interval forecasts, and that taking the average of two point forecasts made by an individual reduces judgment noise to the level found in interval forecasting.

Suggested Citation

  • Xiaoxiao Niu & Nigel Harvey, 2022. "Point, interval, and density forecasts: Differences in bias, judgment noise, and overall accuracy," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
  • Handle: RePEc:wly:fufsci:v:4:y:2022:i:3-4:n:ffo2124
    DOI: 10.1002/ffo2.124
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ffo2.124
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ffo2.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    2. David Tannenbaum & Craig R. Fox & Gülden Ülkümen, 2017. "Judgment Extremity and Accuracy Under Epistemic vs. Aleatory Uncertainty," Management Science, INFORMS, vol. 63(2), pages 497-518, February.
    3. Benson, P. George & Onkal, Dilek, 1992. "The effects of feedback and training on the performance of probability forecasters," International Journal of Forecasting, Elsevier, vol. 8(4), pages 559-573, December.
    4. Wändi Bruine De Bruin & Charles F. Manski & Giorgio Topa & Wilbert van der Klaauw, 2011. "Measuring consumer uncertainty about future inflation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(3), pages 454-478, April.
    5. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    6. Bruine de Bruin, Wändi & van der Klaauw, Wilbert & Topa, Giorgio, 2011. "Expectations of inflation: The biasing effect of thoughts about specific prices," Journal of Economic Psychology, Elsevier, vol. 32(5), pages 834-845.
    7. Lawrence, Michael & O'Connor, Marcus, 1992. "Exploring judgemental forecasting," International Journal of Forecasting, Elsevier, vol. 8(1), pages 15-26, June.
    8. David Tannenbaum & Craig R. Fox & Gülden Ülkümen, 2017. "Judgment Extremity and Accuracy Under Epistemic vs. Aleatory Uncertainty," Management Science, INFORMS, vol. 63(2), pages 497-518, February.
    9. Fischhoff, Baruch, 1994. "What forecasts (seem to) mean," International Journal of Forecasting, Elsevier, vol. 10(3), pages 387-403, November.
    10. Dennie van Dolder & Martijn J. van den Assem, 2018. "The wisdom of the inner crowd in three large natural experiments," Nature Human Behaviour, Nature, vol. 2(1), pages 21-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crump, Richard K. & Eusepi, Stefano & Tambalotti, Andrea & Topa, Giorgio, 2022. "Subjective intertemporal substitution," Journal of Monetary Economics, Elsevier, vol. 126(C), pages 118-133.
    2. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of CentER DP 2011-053)," Other publications TiSEM 38fac5ce-fe8f-4b61-a679-f, Tilburg University, School of Economics and Management.
    3. Olivier Armantier & Giorgio Topa & Wilbert Van der Klaauw & Basit Zafar, 2017. "An overview of the Survey of Consumer Expectations," Economic Policy Review, Federal Reserve Bank of New York, issue 23-2, pages 51-72.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Armantier, Olivier & Koşar, Gizem & Pomerantz, Rachel & Skandalis, Daphné & Smith, Kyle & Topa, Giorgio & van der Klaauw, Wilbert, 2021. "How economic crises affect inflation beliefs: Evidence from the Covid-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 189(C), pages 443-469.
    6. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of EBC DP 2011-014)," Other publications TiSEM 2b92a09f-918e-4614-978d-0, Tilburg University, School of Economics and Management.
    7. Dan Zhu & Qingwei Wang & John Goddard, 2022. "A new hedging hypothesis regarding prediction interval formation in stock price forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 697-717, July.
    8. Becker, Christoph & Duersch, Peter & Eife, Thomas, 2023. "Measuring Inflation Expectations: How the Response Scale Shapes Density Forecasts," Working Papers 0727, University of Heidelberg, Department of Economics.
    9. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    10. Mohammed Abdellaoui & Han Bleichrodt & Cédric Gutierrez, 2023. "Unpacking Overconfident Behavior When Betting on Oneself," Post-Print hal-04383402, HAL.
    11. Abe, Naohito & Ueno, Yuko, 2016. "The Mechanism of Inflation Expectation Formation among Consumers," RCESR Discussion Paper Series DP16-1, Research Center for Economic and Social Risks, Institute of Economic Research, Hitotsubashi University.
    12. Becker, Christoph & Dürsch, Peter & Eife, Thomas A. & Glas, Alexander, 2023. "Households' probabilistic inflation expectations in high-inflation regimes," ZEW Discussion Papers 23-072, ZEW - Leibniz Centre for European Economic Research.
    13. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    14. Claire I. Tsai & Min Zhao & Dilip Soman, 2022. "Salient knowledge that others are also evaluating reduces judgment extremity," Journal of the Academy of Marketing Science, Springer, vol. 50(2), pages 366-387, March.
    15. Christopher Roth & Johannes Wohlfart, 2020. "How Do Expectations about the Macroeconomy Affect Personal Expectations and Behavior?," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 731-748, October.
    16. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    17. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    18. Olivier Armantier & Wändi Bruine de Bruin & Giorgio Topa & Wilbert van der Klaauw & Basit Zafar, 2015. "Inflation Expectations And Behavior: Do Survey Respondents Act On Their Beliefs?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 505-536, May.
    19. Thomson, Mary E. & Onkal-Atay, Dilek & Pollock, Andrew C. & Macaulay, Alex, 2003. "The influence of trend strength on directional probabilistic currency predictions," International Journal of Forecasting, Elsevier, vol. 19(2), pages 241-256.
    20. Pfajfar, Damjan & Žakelj, Blaž, 2016. "Uncertainty in forecasting inflation and monetary policy design: Evidence from the laboratory," International Journal of Forecasting, Elsevier, vol. 32(3), pages 849-864.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:fufsci:v:4:y:2022:i:3-4:n:ffo2124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2573-5152 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.