IDEAS home Printed from https://ideas.repec.org/a/wly/fufsci/v4y2022i2ne2103.html
   My bibliography  Save this article

Using cross‐impact analysis for probabilistic risk assessment

Author

Listed:
  • Ahti Salo
  • Edoardo Tosoni
  • Juho Roponen
  • Derek W. Bunn

Abstract

Cross‐impact analysis is widely employed to inform management and policy decisions based on the formulation of scenarios, defined as combinations of outcomes of relevant uncertainty factors. In this paper, we argue that the use of nonprobabilistic variants of cross‐impact analysis is problematic in the context of risk assessment where the usual aim is to produce conservative risk estimates which may exceed but are not smaller than the actual risk level. Then, building on the characterization of probabilistic dependencies, we develop an approach to probabilistic cross‐impact analysis which (i) admits several kinds of probabilistic statements about the outcomes of relevant uncertainty factors and their dependencies; (ii) maps such statements into constraints on the joint probability distribution over all possible scenarios; (iii) provides support for preserving the consistency of elicited statements; and (iv) uses mathematical optimization to compute lower and upper bounds on the overall risk level. This approach—which is illustrated with an example from the context of nuclear waste repositories—is useful in that it retains the informativeness of cross‐impact statements while ensuring that these statements are interpreted within the coherent framework of probability theory.

Suggested Citation

  • Ahti Salo & Edoardo Tosoni & Juho Roponen & Derek W. Bunn, 2022. "Using cross‐impact analysis for probabilistic risk assessment," Futures & Foresight Science, John Wiley & Sons, vol. 4(2), June.
  • Handle: RePEc:wly:fufsci:v:4:y:2022:i:2:n:e2103
    DOI: 10.1002/ffo2.103
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ffo2.103
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ffo2.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tietje, Olaf, 2005. "Identification of a small reliable and efficient set of consistent scenarios," European Journal of Operational Research, Elsevier, vol. 162(2), pages 418-432, April.
    2. Michael Theil, 2002. "The role of translations of verbal into numerical probability expressions in risk management: a meta-analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 5(2), pages 177-186, April.
    3. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    4. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    5. Edoardo Tosoni & Ahti Salo & Enrico Zio, 2018. "Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 755-776, April.
    6. Liesiö, Juuso & Salo, Ahti, 2012. "Scenario-based portfolio selection of investment projects with incomplete probability and utility information," European Journal of Operational Research, Elsevier, vol. 217(1), pages 162-172.
    7. van Dorp, J. Rene, 2005. "Statistical dependence through common risk factors: With applications in uncertainty analysis," European Journal of Operational Research, Elsevier, vol. 161(1), pages 240-255, February.
    8. Bunn, Derek W. & Salo, Ahti A., 1993. "Forecasting with scenarios," European Journal of Operational Research, Elsevier, vol. 68(3), pages 291-303, August.
    9. George Wright & Fergus Bolger & Gene Rowe, 2009. "Expert Judgement of Probability and Risk," Palgrave Macmillan Books, in: Terry M. Williams & Knut Samset & Kjell J. Sunnevåg (ed.), Making Essential Choices with Scant Information, chapter 11, pages 213-229, Palgrave Macmillan.
    10. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti & Ilmola-Sheppard, Leena, 2018. "Scenario-based portfolio model for building robust and proactive strategies," European Journal of Operational Research, Elsevier, vol. 266(1), pages 205-220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seeve, Teemu & Vilkkumaa, Eeva, 2022. "Identifying and visualizing a diverse set of plausible scenarios for strategic planning," European Journal of Operational Research, Elsevier, vol. 298(2), pages 596-610.
    2. Ahti Salo, 2023. "On the boundaries of experimental research on scenario planning: A commentary on Derbyshire et al. (2022)," Futures & Foresight Science, John Wiley & Sons, vol. 5(2), June.
    3. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    4. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    5. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    6. Zhang, Xinwei & Yan, Yong & Wang, Lilin & Wang, Yang, 2024. "A ranking approach for robust portfolio decision analysis based on multilinear portfolio utility functions and incomplete preference information," Omega, Elsevier, vol. 122(C).
    7. Harju, Mikko & Liesiö, Juuso & Virtanen, Kai, 2019. "Spatial multi-attribute decision analysis: Axiomatic foundations and incomplete preference information," European Journal of Operational Research, Elsevier, vol. 275(1), pages 167-181.
    8. Wiek, Arnim & Walter, Alexander I., 2009. "A transdisciplinary approach for formalized integrated planning and decision-making in complex systems," European Journal of Operational Research, Elsevier, vol. 197(1), pages 360-370, August.
    9. Liesiö, Juuso & Xu, Peng & Kuosmanen, Timo, 2020. "Portfolio diversification based on stochastic dominance under incomplete probability information," European Journal of Operational Research, Elsevier, vol. 286(2), pages 755-768.
    10. Kim, Byung-Cheol, 2022. "Multi-factor dependence modelling with specified marginals and structured association in large-scale project risk assessment," European Journal of Operational Research, Elsevier, vol. 296(2), pages 679-695.
    11. Juho Roponen & Ahti Salo, 2024. "A probabilistic cross‐impact methodology for explorative scenario analysis," Futures & Foresight Science, John Wiley & Sons, vol. 6(1), March.
    12. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    13. Liesiö, Juuso & Salo, Ahti & Keisler, Jeffrey M. & Morton, Alec, 2021. "Portfolio decision analysis: Recent developments and future prospects," European Journal of Operational Research, Elsevier, vol. 293(3), pages 811-825.
    14. Liesiö, Juuso & Kallio, Markku & Argyris, Nikolaos, 2023. "Incomplete risk-preference information in portfolio decision analysis," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1084-1098.
    15. Klerkx, Rik & Pelsser, Antoon, 2022. "Narrative-based robust stochastic optimization," Journal of Economic Behavior & Organization, Elsevier, vol. 196(C), pages 266-277.
    16. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti & Ilmola-Sheppard, Leena, 2018. "Scenario-based portfolio model for building robust and proactive strategies," European Journal of Operational Research, Elsevier, vol. 266(1), pages 205-220.
    17. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti, 2014. "Optimal strategies for selecting project portfolios using uncertain value estimates," European Journal of Operational Research, Elsevier, vol. 233(3), pages 772-783.
    18. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    19. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    20. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:fufsci:v:4:y:2022:i:2:n:e2103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2573-5152 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.