Scanner: Simultaneously temporal trend and spatial cluster detection for spatial‐temporal data
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2849
Download full text from publisher
References listed on IDEAS
- Lu Wang & Guangxing Wang & Huan Yu & Fei Wang, 2022. "Prediction and analysis of residential house price using a flexible spatiotemporal model," Journal of Applied Economics, Taylor & Francis Journals, vol. 25(1), pages 503-522, December.
- Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
- Furong Li & Huiyan Sang, 2019. "Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1050-1062, July.
- Andrea J. Cook & Diane R. Gold & Yi Li, 2007. "Spatial Cluster Detection for Censored Outcome Data," Biometrics, The International Biometric Society, vol. 63(2), pages 540-549, June.
- Marie Chavent & Vanessa Kuentz-Simonet & Amaury Labenne & Jérôme Saracco, 2018. "ClustGeo: an R package for hierarchical clustering with spatial constraints," Computational Statistics, Springer, vol. 33(4), pages 1799-1822, December.
- Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
- Mingming Liu & Jing Yang & Yushi Liu & Bochao Jia & Yun-Fei Chen & Luna Sun & Shujie Ma, 2023. "A fusion learning method to subgroup analysis of Alzheimer's disease," Journal of Applied Statistics, Taylor & Francis Journals, vol. 50(8), pages 1686-1708, June.
- Jonathan Rougier & Aoibheann Brady & Jonathan Bamber & Stephen Chuter & Sam Royston & Bramha Dutt Vishwakarma & Richard Westaway & Yann Ziegler, 2023. "The scope of the Kalman filter for spatio‐temporal applications in environmental science," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Mahmoud Torabi & Rhonda J. Rosychuk, 2011. "Spatio-temporal modelling using B-spline for disease mapping: analysis of childhood cancer trends," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1769-1781, October.
- L Liu & Z. Xu, 2016.
"Regionalization of precipitation and the spatiotemporal distribution of extreme precipitation in southwestern China,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1195-1211, January.
- L Liu & Z. X. Xu, 2016. "Regionalization of precipitation and the spatiotemporal distribution of extreme precipitation in southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1195-1211, January.
- Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
- Marcin Jurek & Matthias Katzfuss, 2023. "Scalable spatio‐temporal smoothing via hierarchical sparse Cholesky decomposition," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- R. A. Haggarty & C. A. Miller & E. M. Scott, 2015. "Spatially weighted functional clustering of river network data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(3), pages 491-506, April.
- J. C. Gower & G. J. S. Ross, 1969. "Minimum Spanning Trees and Single Linkage Cluster Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 18(1), pages 54-64, March.
- Raymond K. W. Wong & Yehua Li & Zhengyuan Zhu, 2019. "Partially Linear Functional Additive Models for Multivariate Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 406-418, January.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- C. Abraham & P. A. Cornillon & E. Matzner‐Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B‐Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595, September.
- Liu, Rong & Yang, Lijian, 2010. "Spline-Backfitted Kernel Smoothing Of Additive Coefficient Model," Econometric Theory, Cambridge University Press, vol. 26(1), pages 29-59, February.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Yating Wan & Minya Xu & Hui Huang & Song Xi Chen, 2021. "A spatio‐temporal model for the analysis and prediction of fine particulate matter concentration in Beijing," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
- Xin Zhang & Jia Liu & Zhengyuan Zhu, 2024. "Learning Coefficient Heterogeneity over Networks: A Distributed Spanning-Tree-Based Fused-Lasso Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 485-497, January.
- Ying Zhang & Song Xi Chen & Le Bao, 2023. "Air pollution estimation under air stagnation—A case study of Beijing," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
- Gong Yunlong & de Haan Jan, 2018. "Accounting for Spatial Variation of Land Prices in Hedonic Imputation House Price Indices: a Semi-Parametric Approach," Journal of Official Statistics, Sciendo, vol. 34(3), pages 695-720, September.
- Xiwei Tang & Lexin Li, 2023. "Multivariate Temporal Point Process Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 830-845, April.
- Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
- James G.M. & Sugar C.A., 2003. "Clustering for Sparsely Sampled Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 397-408, January.
- Decai Liang & Haozhe Zhang & Xiaohui Chang & Hui Huang, 2021. "Modeling and Regionalization of China’s PM2.5 Using Spatial-Functional Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 116-132, March.
- Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
- Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
- Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Shan Yu & Aaron M. Kusmec & Li Wang & Dan Nettleton, 2023. "Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 401-422, September.
- Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
- Elena McDonald & Xin Wang, 2024. "Generalized regression estimators with concave penalties and a comparison to lasso type estimators," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 213-239, August.
- Shao, Lihui & Wu, Jiaqi & Zhang, Weiping & Chen, Yu, 2024. "Integrated subgroup identification from multi-source data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
- Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
- Lijie Gu & Li Wang & Wolfgang Härdle & Lijian Yang, 2014.
"A simultaneous confidence corridor for varying coefficient regression with sparse functional data,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 806-843, December.
- Gu, Lijie & Wang, Li & Härdle, Wolfgang Karl & Yang, Lijian, 2014. "A simultaneous confidence corridor for varying coefficient regression with sparse functional data," SFB 649 Discussion Papers 2014-002, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
- Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
- Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
- Yeonwoo Rho & Yun Liu & Hie Joo Ahn, 2020. "Revealing Cluster Structures Based on Mixed Sampling Frequencies," Papers 2004.09770, arXiv.org, revised Feb 2021.
- Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
- Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
- J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
- Lian, Heng, 2012. "Shrinkage estimation for identification of linear components in additive models," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 225-231.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:5:n:e2849. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.